广度优先搜索算法是一种常见的图搜索算法,可以用于解决很多实际问题,如寻找最短路径、迷宫问题等。下面会介绍广度优先搜索算法。
目录
1.结构
program bfs;
初始化;建立队列 data;
设队列首指针 closed:=0;队列尾指针 open:=1;
repeat
closed 增1,取出 closed 所指结点进行扩展;
for i:=1 to r do begin
if 子结点符合条件 then begin
open 增1,并把新结点存入数据库队尾;
if 新结点与原有结点有重复 then 删于该结点(open 减1)
else if 新结点即目标 then 输出并退出 ;
end{if};
end{for};
until closed>=open;{队列为空}
2.算法解释
2.1 运行步骤解释
-
定义一个队列,用来存储需要搜索的节点。
-
将起点放入队列中,并标记为已访问。
-
取出队列头部元素,即当前需要搜索的节点。
-
遍历当前节点的所有邻居节点。如果该邻居节点未被访问,则将该邻居节点加入队列,并标记为已访问。
-
重复执行步骤3和步骤4,直到队列为空为止。
在实现广度优先搜索算法时,需要用到一个二维数组来表示图的邻接矩阵,以便快速查找两个节点之间是否有边相连。同时,可以为每个节点维护一个“距离”值,表示当前节点到起点的最短距离,每次遍历邻居节点时,可以根据当前节点的距离值来计算邻居节点的距离值。
2.2 例
下面是一个简单的C++实现,用于寻找从起点到终点的最短路径:
#include <iostream>
#include <queue>
using namespace std;
int main() {
// 定义二维数组表示邻接矩阵
int graph[6][6] = {
{0, 1, 1, 0, 0, 0},
{1, 0, 0, 1, 1, 0},
{1, 0, 0, 0, 1, 1},
{0, 1, 0, 0, 0, 1},
{0, 1, 1, 0, 0, 1},
{0, 0, 1, 1, 1, 0}
};
// 定义起点和终点
int start = 0, end = 5;
// 定义队列存储需要搜索的节点
queue<int> q;
// 定义一个数组标记每个节点是否已经被访问过
bool visited[6] = {false};
// 定义一个数组记录每个节点到起点的最短距离
int distance[6] = {0};
// 将起点放入队列中,并标记为已访问
q.push(start);
visited[start] = true;
// 不断取出队列头部元素进行搜索
while (!q.empty()) {
int curr = q.front();
q.pop();
// 遍历当前节点的所有邻居节点
for (int i = 0; i < 6; i++) {
if (graph[curr][i] == 1 && !visited[i]) {
// 如果该邻居节点未被访问,则将该节点加入队列,并标记为已访问
q.push(i);
visited[i] = true;
// 计算该邻居节点的距离值
distance[i] = distance[curr] + 1;
}
}
}
// 输出起点到终点的最短距离
cout << "The shortest distance from " << start << " to " << end << " is " << distance[end] << endl;
return 0;
}
在上面的代码中,我们假设有一个6个节点的图,邻接矩阵表示为一个6x6的二维数组。其中,元素为1表示该节点与相应的节点有边相连,元素为0则表示没有边相连。起点为0,终点为5。我们使用了一个队列来存储需要搜索的节点,并使用了一个数组来标记每个节点是否已经被访问过。同时,我们还定义了一个数组来记录每个节点到起点的最短距离。在每次遍历邻居节点时,我们根据当前节点的距离值来计算邻居节点的距离值。最后,输出起点到终点的最短距离。
需要注意的是:上面的示例代码只适用于无权图的情况。如果图中存在边权值,则需要使用Dijkstra算法或者A*算法等更高级的算法来寻找最短路径。
3.例题
细胞
【题目描述】
一矩形阵列由数字00到99组成,数字11到99代表细胞,细胞的定义为沿细胞数字上下左右还是细胞数字则为同一细胞,求给定矩形阵列的细胞个数。如:
阵列
4 10
0234500067
1034560500
2045600671
0000000089有44个细胞。
【输入】
第一行为矩阵的行n和列m;
下面为一个n×m的矩阵。
【输出】
细胞个数。
【输入样例】
4 10
0234500067
1034560500
2045600671
0000000089【输出样例】
4
【题目来源】
设数组vis,vis[i][j]表示(i,j)位置已经访问过。
遍历地图中的每个位置,尝试从每个位置开始进行搜索。
如果该位置不是0且没有访问过,那么访问该位置,并尝试从其上下左右四个位置开始搜索。
在看一个新的位置时,如果该位置在地图内,没有访问过且不是0,那么继续从该位置开始进行搜索。
在遍历网格的过程中,一次成功开始的搜索可以确定一个连通块,统计连通块的个数,即为结果。
搜索方法可以采用深搜或广搜。
#include<bits/stdc++.h>
using namespace std;
#define N 105
struct Node
{
int x, y;
Node(){}
Node(int a, int b):x(a),y(b){}
};
int n, m, ct, dir[4][2]={{0,1},{0,-1},{1,0},{-1,0}};//dir:方向数组
char mp[N][N];//地图
bool vis[N][N];//vis[i][j]:(i,j) 位置是否已访问过
void bfs(int sx, int sy)//尝试从(sx,sy)位置开始进行广搜
{
queue<Node> que;
vis[sx][sy] = true;
que.push(Node(sx, sy));
while(que.empty() == false)
{
Node u = que.front();
que.pop();
for(int i = 0; i < 4; ++i)//遍历上下左右四个方向
{
int x = u.x + dir[i][0], y = u.y + dir[i][1];//新位置(x,y)
if(x >= 1 && x <= n && y >= 1 && y <= m && vis[x][y] == false && mp[x][y] != '0')
{
vis[x][y] = true;//访问(x,y)位置
que.push(Node(x, y));//(x,y)入队
}
}
}
}
int main()
{
cin >> n >> m;
for(int i = 1; i <= n; ++i)
for(int j = 1; j <= m; ++j)
cin >> mp[i][j];
for(int i = 1; i <= n; ++i)
for(int j = 1; j <= m; ++j)
{//尝试从每个位置开始进行广搜
if(vis[i][j] == false && mp[i][j] != '0')
{
bfs(i, j);
ct++;
}
}
cout << ct;
return 0;
}
创作不易,白嫖不好,各位的支持和认可,就是我创作的最大动力,如果喜欢我的文章,给个关注吧!
冰焰狼 | 文
如果本篇博客有任何错误,请批评指教,不胜感激 !