4.3数据库-虚拟机-mysql对字段信息的修改,以及简单统计查询
4.5 使用IBM-SPSS工具,引用相关算法建立模型进行数据分析与挖掘。
6.2IBM SPSS Modeler K-Means聚类算法
1.引言
商业智能(BI)概念由Gartner Group提出,涉及信息搜索、管理和分析,目的是使企业决策者获得知识,促使他们做出对企业更加有力的决策。商业智能不是一种独立的技术,而是一套完整的解决方案。它将数据仓库,联机分析(OLAP),数据挖掘和可视化等技术结合应用于业务活动,使企业的复杂信息转化为可供辅助的知识,最后将知识呈现给用户,以支持企业决策。随着Internet应用程序规模的不断扩大,需要处理的数据量呈指数级增长,数据结构变得越来越复杂。业务运营压力急剧 增大,从而直接推动了大数据处理技术的发展。随着电子商务、云计算、移动社交媒体、大数据平台技术等新一代IT技术的快速发展,传统的 BI系统逐渐不能满足企业数据分析的需求。个性化、数据化、科学的数据分析技术逐渐使传统的BI系统需要与大数据技术相结合,实现一种满足大数据分析的新商业智能分析挖掘系统。
1.1 编写目的
为了将大数据与传统商业智能相结合,设计相应的商业智能商业智能分析挖掘系统,将着重探讨数据源预处理、模型建立、数据分析、数据挖掘,以优衣库服装企业电商数据为例,用聚类分析中的K-Means算法、分类分析中的贝叶斯、C5.0决策树等算法对商业业务数据进行分析,以此实现商家做出合理决策进行个性化营销的目的。
关键词: 大数据 商业智能 数据分析 数据挖掘。
1.2 背景
优衣库(英文名称:UNIQLO,日文假名发音:ユニクロ),为日本迅销公司的核心品牌,建立于1984年,当年是一家销售西服的小服装店,现在已经是家喻户晓的品牌。价廉物美的休闲装“UNIQLO”是Unique Clothing Warehouse的缩写,意为消费者提供“低价良品、品质保证”的经营理念,在日本经济低迷时期取得了惊人的业绩。迅销公司名称是FAST RETAILING,这其中包含了很多特别的含义。FAST(迅速)+RETAILING(零售)体现了如何将顾客的要求迅速商品化、如何迅速提供商品这一企业根本精神,也表达了他们期望成为拥有快餐文化这一世界通用理念的零售企业界之不可动摇的信念。
目前零售行业竞争异常激烈,在商场上占有一席之地越来越困难。针对企业销售数据结构混杂、数据利用率低、客户流失 严重、潜力市场寻找困难。
自从我国加入 WTO 世贸组织之后,国外零售集团也加入中国零售行业的竞争,为我国零售行业特别是与国外竞争激烈的个别企业提供一个系统的商业智能解决方案,让企业管理者不仅了解企业销售现状,并且能预测每做出一个决策对销售收入的影响。特此研究与设计一款基于商业智能的新销售商业智能分析挖掘系统。
2.可行性分析
各种信息技术的发展以及普遍运用,给我国各行各业的企业管理带来了全新的转变。尤其是电商业务场景的决策,其由传统的数据统计处理转变为数字型信息化系统处理模式, 而传统的数据挖掘处理方式显得“捉襟见肘”,如何帮助企业在短时间内从大量的数据库中做出最为快速以及科学合理的反应,全面优化企业在决策上的质量水平显得越来越重要。
现有BI数据分析与挖掘软件已经愈加成熟与稳定,并且大多数是开源、免费。正因为如此,对我们的研究提供将会提供一定的协助作用。将BI分析技术有效运用在商业决策上,能够帮助企业的管理层对数据展开更加深入的分析和处理, 使得整体的决策机制变得更加智能化和信息化, 帮助企业实现智能化的管理模式, 给商家提供强有力的数据基础, 帮助各领域的数字型企业及时做出有效决策,有效提高商品变现转化率,进而获得更大的利润空间。