质数的一些性质和算法

质数的性质:质数又称素数,大于1,除了自身和1,不能被其他小于自身的数整除;

最一般的算法就不讲了,时间复杂都太高,不会用到;

1.假设我们判断n是不是质数,我们会通过循环1~n,看有没有数能整除它,其实我们没必要循环到n,假如某个数能整除n,肯定也有对应的数能整除n,因为假如a能整除n,那么n可以被拆分为n=a*b;a和b肯定有一个是大于sqrt(n)的,有一个是小于sqrt(n)的,我们找到了小于sqrt(n)的那个数就没必要找大于sqrt(n)的了,因为这两个数是对应的,那么我们循环就没必要遍历到n了,只需要循环到sqrt(n),这样就节约了很多时间,但是这种算法,如果输入数据很多的话时间复杂度还是很大,那么我们有没有一种可以预先处理出多少范围内的算法呢?

2.线性筛法

直接用代码注释解释:

int primes[N], cnt;     // primes[]存储所有素数
bool st[N];         // st[x]存储x是否被筛掉

void get_primes(int n)
{
    for (int i = 2; i <= n; i ++ )
    {
        if (!st[i]) primes[cnt ++ ] = i;
        for (int j = 0; primes[j] <= n / i; j ++ )//便利所有的质数
        {
            st[primes[j] * i] = true;
            if (i % primes[j] == 0) break;
        }
    }
}

上述代码:

1.如果i%primes[j]==0,那么primes[j]一定是i的最小质因子,也一定是primes[j]*i的最小质因子,为什么呢,因为质数是从小到大开始枚举的,又因为primes[j]又是质数,primes[j]又能整除i,所以primes[j]是primes[j]*i的最小质因子;

2.如果i%primes[j]!=0,说明了什么呢,primes[j]一定小于i的最小质因子,但是prime[j]又可以整除i*primes[j],且primes[j]是从小到大枚举的;所以primes[j]是primes[j]的最小质因子;

3.为什么用这种方法可以筛掉所有的合数呢?举个例子:假设一个合数x,一定存在一个最小质因子,假设primes[j]是x的最小质因子,当i枚举到i/primes[j]的时候,就已经把x筛掉了;

4.为什么当primes[j]能整除i的时候就要跳出循环,因为我们如果不跳出,那就不能保证某一个数是被它的最小质因子筛掉的,为什么我们需要保证每一个数都是被它的最小质因子筛掉的呢?因为我们需要保证是线性的,如果每一个合数都是被它的最小质因子筛掉的,那么是不是只筛了一次?

5.为什么不会出现第二重循环走到primes[j]还没去到质数primes[j]是零的情况,分情况如果i是一个质数那么在上面一定假如到了primes[j]里面了,到i%primes[j]时两个一样的数,肯定跳出循环,如果i是一个合数那更不用说,一定能找到一个最小的质数,已经跳出循环了。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值