MEM/MBA数学基础(02)实数运算和性质

本系列文章主要讲解 MEM/MBA 数学基础,系列文章总纲链接为:MEM/MBA 数学总纲


本章节思维导图如下所示(思维导图会持续迭代):

第一层:

第二层:


1 实数的运算和性质

1.1 数的概念与性质

基本概念说明:

1.2 有理数与无理数的组合运算性质

  1. 有理数(+-*/)有理数,仍为有理数(注意:此处要保证除法的分母有意义)
  2. 无理数(+-*/)无理数,有可能为无理数,也有可能为有理数
  3. 有理数(+-)无理数 = 无理数,非零有理数(*/)无理数=无理数

注意:

  1. 有理数 包括 整数、有限小数、无限循环小数。有限小数 和 无限循环小数 都是 可以化为分数的。
  2. 有理数一定可写成分数形式,无理数则不能,这是二者的本质区别。
  3. 关键推论:a、b是有理数,c是无理数, 如果 a+b*c=0,那么 a=b=0

1.3 整数部分与小数部分

概念:整数部分是指一个数减去一个整数后,所得的差大于等于零且小于 1,那么此减数是整数部分,差是小数部分。比如:

  • 8.2的 整数部分是8,小数部分是0.2
  • -8.2的 整数部分是-9,小数部分是0.8

1.4 整数的分类:奇偶数的的概念和运算性质

奇数±奇数=偶数奇数*奇数=奇数偶数±奇数=奇数
偶数±偶数=偶数偶数*偶数=偶数偶数±奇数=奇数

1.5 正整数的分类:质数和合数

正整数:包括1 、质数(也称素数,只有1和自身两个约数)、合数(有除1和自身以外的约数)

  • 质数:只有 1 和它本身两个约数(因数)的正整数叫质数(或素数)。最小的质数为 2(唯一的偶质数,常见的30 以内的质数共 10 个:2、3、5、7、11、13、17、19、23、29)
  • 合数:除了 1 和本身外还有其他约数(因数)的正整数,最小的合数是 4(注意:1 既不是质数也不是合数)

特别注意:最小的质数是2,最小的合数是4。

1.6 整除与带余除法(商数和余数的表示)

设整数n被整数m整除,即存在整数s ,使得 n=m*s ,称n能被m整除。留意以下一些规律:

  • 能被 2 整除的数:个位为 0,2,4,6,8。
  • 能被 3 整除的数:各位数字之和必能被 3 整除。
  • 能被 4 整除的数:末两位(个位和十位在一起)数字必能被 4 整除。(补充说明:对于3位数及以上100能被4整除) 
  • 能被 5 整除的数:个位为0或5。
  • 能被 6 整除的数:同时满足能被 2 和 3 整除的条件。
  • 能被 7 整除的数:将整数c个位数字截去得到a,个位数为b,判断a-2*b的差是否是7的倍数,如果该数能被7整除,则c能被7整除​​​​​​​(注意该规律可以持续递归,举例:判断6139是否7的倍数的过程如下:613-9×2=595 ,59-5×2=49,所以6139是7的倍数,以此类推)
  • 能被 8 整除的数:末三位(个位、十位和百位)数字必能被 8 整除。
  • 能被 9 整除的数:各位数字之和必能被 9 整除。
  • 能被 10 整除的数:个位必为 0。

1.7 公约数、公倍数、互质

@1 基本概念

  • 约数/因数设a为一个正整数,m为a的一个约数是指:a能被正整数m除尽,比如:a=15, 则 a=3*5,所以 a 有约数1 3 5 15 共4个。
  • 公约数/公因数若正整数 m 同时是几个正整数 a1,a2...a[r]的约数,就称 m 是 a1,a2...a[r]的公约数,并把a1,a2...a[r]的公约数中的最大的称为最大公约数。比如:6和8能被2 整除,2是6和8 的公约数。公约数是有限的。
  • 倍数:设a为一个正整数,m为a的一个倍数是指:m能被正整数a除尽,如m=15, 则 m=3*5,所以15是3的倍数也是5的倍数,3和5 的倍数有无数个。
  • 公倍数:若正整数 n 同时是几个正整数 a1,a2...a[r]的倍数,就称 n 是 a1,a2...a[r]的公倍数,并把 a1,a2...a[r]的公倍数中最小的称为最小公倍数。比如:3和5 是15 30 45 60的 公倍数。公倍数是无限的。
  • 互质:若正整数m与正整数n的公约数只有1,就称这两个正整数 m 与 n 互质,并称 n/m 为既约分数(最简分数)

@2 常用技巧

  • 一般是使用 短除法求两个数的最大公约数和最小公倍数。
  • 定理:最大公约数*最小公倍数 = 俩数乘积。
  • 最小公倍数 包含最大公约数的所有零件。

2 实数的性质和运算

2.1 实数的基本性质

  1. 实数与数轴上的点一一对应。
  2. 若 a,b 是任意两个实数,则在 a<b,a=b,a>b 中有且只有一个关系成立。
  3. 若a是任意实数,则a^2≧0。

2.2 实数的运算分类

实数的四则运算满足加法和乘法运算的交换律、结合律和分配律。还可以定义实数的乘方和开方运算。幂的运算性质如下:

开方运算:在实数范围内,负实数无偶次方根;0 的偶次方根是 0;正实数的偶次方根有两个,且互为相反数,其中正的偶次方根称为算术根。如:当 a>0 时,a的平方根是√a,其中√a是正实数 a 的算术平方根。在运算有意义的前提下:

2.3 实数运算技巧总结

@1 分母有理化

有理化因式:两个含有二次根式的代数式相乘,如果它们的积不含二次根式,那么这两个代数式互为有理化因式(一个二次根式的有理化因式不唯一)。如2的有理化因式为√2, √2+√3的有理化因式为 √2-√3,

分母有理化:去掉分母中的根号,将分子分母同时乘以分母的有理化因式。比如:

@2 裂项相消法

常用于当题干中出现多个分数求和的情况。


3 比、比例

3.1 比、比例的定义

@1 比:两个数相除称为这两个数的比,即 a:b=a/b。相除所得商叫做比值。记作a : b = a/b = k,在实际应用中常将比值用百分数表示,称为百分比,如:

@2 比例:相等的比称为比例,记作a:b=c:d或a/b=c/d。其中a和d称为比例外项,b和c称为比例内项。当 a : b=b : c 时,称b为a和c的比例中项,显然当a,b,c均为正数时, b是a和c的 几何平均值。

3.2 比与比例的性质

3.3 比例的基本定理

特别注意:不要忘记等比定理使用条件

3.4 正比例与反比例

  • 正比 若y=kx(k不为零),则称y与x成正比,k称为比例系数。
  • 反比 若y=k/x(k不为零),则称y与x成反比,k称为比例系数。

4 绝对值及其性质

4.1 实数的绝对值的定义 和几何意义

4.2 绝对值的性质

4.3 绝对值不等式性质与运算法则

注意:要掌握等号成立条件的判断

4.4 绝对值最值问题

  • 常规方法:分段讨论法去绝对值符号,根据图像判断最值。
  • 终极方法:描点看边取拐点法拐点即绝对值等于0时x的取值)。
  • 最值说明:|x-a|-|x-b|的最大值是|a-b|,最小值是-|a-b|;|x-a|+|x-b|的最小值是|a-b|

5 平均值及运算

5.1 定义

注意:几何平均值只对正实数有定义,而算术平均值对任何实数都有定义。

5.2 定理及性质

@1 基本定理:当 x1 , x2 ,...,x[n]为n个正实数时,它们的算术平均值不小于它们的几何平均值,即

当且仅当x1 = x2 = ... = x[n]时,等号成立。

@2 常用的基本不等式:

  • a^2+b^2 ≧2*a*b(a b 均为实数)
  • (a+b)/2≧√(a*b)(a b 均为正实数)
  • (a+b+c)/3 ≧ 3√(a*b*c)(a b c均为正实数,3√表示为3次方根)
  • a/b+b/a ≧2(a b 均为实数 且 a*b>0)
  • a+1/a≧2(a为实数 且 a>0)
  • a+1/a≦2(a为实数 且a<0)
<think>嗯,用户问的是MEMMBA有什么区别,我需要详细介绍一下。首先,我得确认自己是否了解这两个学位的全称基本情况。MEM是工程管理硕士,MBA是工商管理硕士,对吧?那它们的区别可能涉及培养目标、课程设置、适合人群、职业发展方向等方面。 首先,我应该从定义开始。MEM全称Master of Engineering Management,主要针对工程或技术领域的管理;而MBA是Master of Business Administration,更广泛地覆盖商业管理。用户可能想知道哪一个更适合他们,所以需要明确两者的不同点。 接下来,培养目标方面。MEM可能更偏向技术管理,培养的是懂技术的管理者,而MBA则是培养全面的商业管理人才,适合那些想转管理或创业的人。这点需要详细说明,可能用户是工科背景,考虑转型,所以需要对比两者的侧重点。 然后是课程设置。MEM的课程可能包括项目管理、系统工程、技术创新管理的,结合工程技术;而MBA会有财务管理、市场营销、战略管理等通用商业课程。这时候可能需要举例说明课程的不同,让用户更清楚内容差异。 适合人群方面,MEM适合有工程或技术背景的人,比如工程师想转管理岗;MBA则适合不同背景的人,尤其是希望进入综合管理或转行的人。这里可能需要考虑用户的工作经验,比如MEM通常需要一定技术经验,而MBA可能对行业背景要求更宽松。 职业发展方向也不同。MEM毕业生可能进入制造业、IT、建筑等行业的技术管理岗位;MBA则可能进入金融、咨询、高层管理等领域。用户可能关心毕业后的就业前景,这部分需要具体说明可能的职位行业。 申请要求方面,MEM可能更看重工科背景,而MBA重视工作经验管理潜力。比如MEM申请者可能需要工程学士学位,而MBA可能接受更多元化的背景,但要求工作经验更长。 学费学制也是考虑因素。国内MEM的学费可能比MBA低,比如10-20万,而顶尖MBA可能要30-50万甚至更高。学制方面,两者可能都是2-3年,但非全日制的MEM可能更灵活,适合在职人员。 最后,总结如何选择。用户可能需要根据自身背景、职业规划兴趣来决定。比如,如果已经在技术领域,想提升管理能力,MEM更合适;如果想转行或拓宽商业视野,MBA更好。需要强调两者没有绝对优劣,只有适合与否。 可能用户没有说出来的需求是,他们可能正在考虑转行或晋升,需要了解哪个学位更能帮助他们达到目标。或者他们在技术岗位工作,犹豫是否转向管理,这时候MEM可能更贴合。也有可能他们担心自己的背景是否符合申请要求,需要明确申请条件。 另外,可能需要提到两者在某些学校或项目中的交叉点,比如有的MBA可能有技术管理方向,而MEM也可能包含一些商业课程。不过总体来说,侧重点不同。要确保信息准确,避免误导用户。 检查是否有遗漏点,比如是否需要比较两者的国际认可度,或者是否有联合项目。不过一般情况下,主要区别在于上述几个方面。所以整理这些点,用清晰的结构例子来回答用户的问题即可。</think>MEM(工程管理硕士)MBA(工商管理硕士)是两种针对不同职业发展方向的研究生学位,主要区别体现在培养目标、课程设置、适合人群等方面。以下是具体对比: --- ### **1. 培养目标** - **MEM(Master of Engineering Management)** 聚焦**技术与管理的交叉领域**,培养既懂技术又懂管理的复合型人才,适合希望在**工程技术领域**向管理岗转型的人群。 *例如*:制造业项目经理、IT技术总监、建筑行业工程负责人等。 - **MBA(Master of Business Administration)** 培养**通用型商业管理人才**,注重战略思维、市场营销、财务等综合管理能力,适合希望提升商业视野或转行(如金融、咨询、创业)的人群。 *例如*:企业高管、创业者、跨行业转型者。 --- ### **2. 课程设置** - **MEM** 课程结合技术与商业,典型科目: - 系统工程与项目管理 - 技术创新管理 - 供应链优化 - 数据分析与决策 - 工程法律与风险管理 - **MBA** 课程覆盖商业全领域,典型科目: - 公司战略与领导力 - 财务管理与资本运作 - 市场营销与品牌管理 - 人力资源管理 - 商业伦理与社会责任 --- ### **3. 适合人群** - **MEM** - **背景**:工科、理科、信息技术等专业背景。 - **职业阶段**:3-5年技术岗位经验,希望晋升技术管理岗(如CTO、技术总监)。 - **行业**:制造业、IT/互联网、能源、建筑等。 - **MBA** - **背景**:不限专业,但通常要求一定管理经验。 - **职业阶段**:职业上升期或转型期,目标为高管(CEO、CFO)、咨询顾问或创业者。 - **行业**:金融、咨询、消费、科技等广泛领域。 --- ### **4. 职业发展路径** - **MEM** - **技术管理岗**:项目经理、产品总监、工程运营负责人。 - **新兴领域**:智能制造、新能源、人工智能等行业的决策者。 - **MBA** - **综合管理岗**:企业高管、部门负责人。 - **转型方向**:投资银行、管理咨询、自主创业。 --- ### **5. 申请要求** - **MEM** - 学历:通常要求本科为理工科。 - 经验:部分院校要求技术相关工作经验。 - **MBA** - 学历:不限专业,但竞争激烈(名校偏好985/211或知名企业背景)。 - 经验:多数要求3年以上工作经验,管理层申请者更具优势。 --- ### **6. 学费与学制** - **学费**: - MEM(国内):10-20万(部分名校更高)。 - MBA(国内):15-60万(顶尖院校如清华、北大MBA学费超40万)。 - **学制**:两者多为2-3年,非全日制为主。 --- ### **如何选择?** - **选MEM**:已有技术背景,希望在**本行业深耕管理**。 - **选MBA**:需**拓宽商业资源**,目标跨行业或创业。 两者并无绝对优劣,需结合职业规划选择。例如: - 工程师想管理团队研发产品 → MEM。 - 销售经理想转行金融或创业 → MBA。 若有其他具体问题(如院校推荐、备考建议),可进一步探讨! 😊
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

图王大胜

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值