同余与矩阵乘法

同余:

重要算法:扩展欧几里得算法;

作用:例如gcd(a,b) = d,求两个系数a*x+b*y = d,扩展欧几里得算法的作用就是能够快速求出x,y.

公式推导:

就是欧几里得公式的原理,每次欧几里得递归之后,x,y都是不一样的,上面我们是通过公式推导找出了这一层和下一层的关系,而最后一层,很显然就是x=1,y=0,然后逆推回去就行。

通过最终的化简可以得到最终的公式为:

x = x0 + k(b/gcd);

y = y0 - k(a/gcd);

解决什么问题:

最主要解决线性同余方程: 

有解条件:

矩阵乘法:

1.线性同余方程:

1.同余方程

求关于 x 的同余方程 ax≡1(modb) 的最小正整数解。

输入格式
输入只有一行,包含两个正整数 a,b,用一个空格隔开。

输出格式
输出只有一行,包含一个正整数 x,表示最小正整数解。

输入数据保证一定有解。

数据范围
2≤a,b≤2×1e9
输入样例:
3 10
输出样例:
7

题解:

#include<iostream>

using namespace std;

typedef long long ll;

ll gcd(ll a,ll b,ll& x,ll& y)
{
    if(!b)
    {
        x = 1;
        y = 0;
        return a;
    }
    int d = gcd(b,a%b,x,y);
    int t = y;
    y = x - a/b*y;
    x = t;
    return d;
}

int main()
{
    ll a,b,x,y;
    cin>>a>>b;
    gcd(a,b,x,y);
    
    cout<<(x%b+b)%b<<endl;
}

2.青蛙的约会

两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面。

它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止。

可是它们出发之前忘记了一件很重要的事情,既没有问清楚对方的特征,也没有约定见面的具体位置。

不过青蛙们都是很乐观的,它们觉得只要一直朝着某个方向跳下去,总能碰到对方的。

但是除非这两只青蛙在同一时间跳到同一点上,不然是永远都不可能碰面的。

为了帮助这两只乐观的青蛙,你被要求写一个程序来判断这两只青蛙是否能够碰面,会在什么时候碰面。

我们把这两只青蛙分别叫做青蛙 A 和青蛙 B,并且规定纬度线上东经 0 度处为原点,由东往西为正方向,单位长度 1 米,这样我们就得到了一条首尾相接的数轴。

设青蛙 A 的出发点坐标是 x,青蛙 B 的出发点坐标是 y。

青蛙 A 一次能跳 m 米,青蛙 B 一次能跳 n 米,两只青蛙跳一次所花费的时间相同。

纬度线总长 L 米。

现在要你求出它们跳了几次以后才会碰面。

输入格式
输入只包括一行 5 个整数 x,y,m,n,L。

输出格式
输出碰面所需要的跳跃次数,如果永远不可能碰面则输出一行 Impossible。

数据范围
x≠y<2000000000,
0<m,n<2000000000,
0<L<2100000000
输入样例:
1 2 3 4 5
输出样例:
4

解法: 

 代码:

#include<cstring>
#include<iostream>

using namespace std;

typedef long long ll;

ll exgcd(ll a,ll b,ll& x,ll& y)
{
    if(!b)
    {
        x = 1;
        y = 0;
        return a;
    }
    ll d = exgcd(b,a%b,x,y);
    ll t = y;
    y = x - a/b*y;
    x = t;
    return d;
}

int main()
{
    ll a,b,m,n,L;
    cin>>a>>b>>m>>n>>L;
    ll x,y;
    ll d = exgcd(m - n,L,x,y);
    if((b - a) % d) cout<<"Impossible"<<endl;
    else
    {
        x = x*(b-a)/d;
        ll t = abs(L/d);
        cout<<(x%t+t)%t<<endl;
    }
}

3.最幸运的数字

8 是中国的幸运数字,如果一个数字的每一位都由 8 构成则该数字被称作是幸运数字。

现在给定一个正整数 L,请问至少多少个 8 连在一起组成的正整数(即最小幸运数字)是 L 的倍数。

输入格式
输入包含多组测试用例。

每组测试用例占一行,包含一个整数 L。

当输入用例 L=0 时,表示输入终止,该用例无需处理。

输出格式
每组测试用例输出结果占一行。

结果为 Case i:+一个整数 N,N 代表满足条件的最小幸运数字的位数。

如果满足条件的幸运数字不存在,则 N=0。

数据范围
1≤L≤2×109
输入样例:
8
11
16
0
输出样例:
Case 1: 1
Case 2: 2
Case 3: 0

解法:

  

#include <iostream>

using namespace std;

typedef long long LL;

//欧几里得算法
int gcd(LL a, int b) {
    return b ? gcd(b, a % b) : a;
}
//试除法求欧拉函数
LL get_euler(LL c) {
    LL res = c;
    for (int i = 2; i <= c / i; ++ i) {
        if (c % i == 0) {
            int s = 0;
            while (c % i == 0) ++ s, c /= i;
            res = res / i * (i - 1);
        }
    }
    if (c > 1) res = res / c * (c - 1);
    return res;
}
//龟速乘
LL qmul(LL a, LL b, LL c) {
    LL res = 0;
    while (b) {
        if (b & 1) res = (res + a) % c;
        a = (a + a) % c;
        b >>= 1;
    }
    return res;
}
//快速幂
LL qmi(LL a, LL b, LL c) {
    LL res = 1;
    while (b) {
        if (b & 1) res = qmul(res, a, c);
        a = qmul(a, a, c);
        b >>= 1;
    }
    return res;
}
int main() {
    int T = 1;
    LL L;
    while (cin >> L, L) {
        int d = gcd(L, 8);

        LL c = 9 * L / d;

        LL phi = get_euler(c);

        LL res = 1e18;
        if (c % 2 == 0 || c % 5 == 0) res = 0; //判断c和10是否互质(10必须模c余1)
        else {
            for (LL i = 1; i <= phi / i; ++ i) {
                if (phi % i == 0) {
                    if (qmi(10, i, c) == 1) res = min(res, i);
                    if (qmi(10, phi / i, c) == 1) res = min(res, phi / i);
                }
            }
        }
        printf("Case %d: %lld\n", T ++ , res);
    }
    return 0;
}

作者:一只野生彩色铅笔
链接:https://www.acwing.com/solution/content/47979/
来源:AcWing
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

矩阵乘法:

 

 

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Strassen矩阵乘法是一种基于分治策略的矩阵乘法算法,它可以在较低的时间复杂度下进行矩阵乘法运算。该算法的基本思想是将两个矩阵分割成四个子矩阵,然后通过一系列的加法和减法运算得到七个中间矩阵,最后通过递归调用自身来计算这些中间矩阵的乘积。在计算过程中,Strassen算法利用了矩阵的分块性质,从而减少了乘法的次数,从而提高了计算效率。 在实现Strassen矩阵乘法时,需要对输入矩阵的阶数进行判断。如果输入矩阵的阶数是2的次幂,则可以直接使用普通的Strassen算法进行计算。如果输入矩阵的阶数不是2的次幂,则需要对输入矩阵进行拓展,使其阶数变为2的次幂,然后再进行计算。拓展的方法可以是在原矩阵的右下方添加零元素,使其阶数变为2的次幂。计算得到的结果再进行矩阵缩略,即将多余的零元素去除,得到最终的乘积矩阵。 总结起来,Strassen矩阵乘法是一种高效的矩阵乘法算法,它通过分治策略和矩阵的分块性质来减少乘法的次数,从而提高计算效率。在实现时,需要对输入矩阵的阶数进行判断,并进行矩阵的拓展和缩略操作。 #### 引用[.reference_title] - *1* [Strassen:一种高效的矩阵相乘算法](https://blog.csdn.net/weixin_40982849/article/details/121338011)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值