求组合数(C语言)(三种方法)

这篇博客介绍了计算组合数的三种C语言实现方法:使用循环、递归以及不使用递归。每种方法都通过求阶乘的方式来计算从m个数中取n个数的组合数。循环法直观简洁,递归法则利用了函数调用自身的特点,而无递归法则适合不熟悉递归的读者。代码示例详尽,便于理解和实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

方法一:

直接来,简单明了,完成作业

#include<stdio.h>
double fact(int b)
{
	int a = 0;
	double fact = 1;
	//分析:以b等于3为例
	//a=1>>fact=1*1>>a=2>>fact=1*2>>a=3>>fact=2*3
	//a=4>3跳出for循环
	for (a = 1; a <= b; a++)
	{
		fact *= a;
	}
	return fact;
}
int main()
{
	int m, n = 0;
	double result;
	scanf("%d %d", &m, &n);
	result = fact(n) / (fact(m) * fact(n - m));
	printf("result = %f", result);
	return 0;
}

方法二:(有递归)

#include<stdio.h>
int fact(int num);
int main() 
{
	//从n个元素中取m个组合
	int n = 0;
	int m = 0;
	scanf("%d %d", &n,&m);
	double ret = fact(n) / (fact(m) * fact(n - m));
	printf("%.2f\n", ret);
}
int fact(int num)//求num的阶乘的函数
//5=5*4!=5*(4*3*2*1)
//4=4*3!=4*(3*2*1)
//递归的思想,列出函数,直接对着写
{
	if (num < 0)
	{
		return 0;
	}
	if (num == 1||num == 0)
	{
		return 1;
	}
	if (num > 1)
	{
		return num * fact(num - 1);
	}
}

方法三:(不用递归,看不懂递归的看这里)

函数定义与调用就是顺着来,我们要从m个数中拿n个数组合,那么函数就直接用

 我们想要求n的阶乘,我们就直接用

     

 总的来说,先写框架,最后补齐函数定义即可

#include<stdio.h>
double fact(int i, int j);
int fac(int k);
int main()
{
	int n = 0;
	int m = 0;
	//scanf("%d %d\n",&n,&m);//错误示范,这样\n会要你多输入一个数
	scanf("%d %d", &n, &m);
	double ret = fact(n, m);
	printf("%.2f\n", ret);
	return 0;
}
int fac(int k)//求k的阶乘
{
	int result = 1;
	while (k != 0)
	{
		result = result * k;
		k--;
	}
	return result;
}
double fact(int i, int j)//从i个元素中取j个进行组合
{
	//求i,j,(i-j)的阶乘//i!/j!*(i-j)!
	//定义新函数求阶乘 //int fac(int k);
	int x = fac(i);
	int y = fac(j);
	int z = fac(i - j);
	return x/(y*z);
}

在C语言中,利用阶乘函数计算组合数(也称为“n choose k”,记作 C(n, k) 或者 nPr)通常不是直接通过递归或者循环来计算阶乘,因为这种做法对于大数值可能会导致溢出。更常见的方法是使用组合公式: C(n, k) = n! / [k!(n-k)!] 其中,`n!` 表示 n 的阶乘,即从 1 到 n 连续相乘。 这里是一个简单的C语言函数来计算组合数,使用了递归的方法避免直接算阶乘: ```c #include <stdio.h> // 定义阶乘函数 unsigned long long factorial(int n) { if (n == 0 || n == 1) return 1; else return n * factorial(n - 1); } // 计算组合数的函数 unsigned int combination(int n, int k) { unsigned long long numerator = factorial(n); unsigned long long denominator = factorial(k) * factorial(n - k); // 检查除法是否会溢出 if (denominator != 0) { return numerator / denominator; } else { printf("Error: Division by zero in combination calculation.\n"); return 0; } } int main() { int n, k; printf("Enter n and k for combinations: "); scanf("%d %d", &n, &k); if (k > n) printf("Invalid input: k should be less than or equal to n.\n"); else { unsigned int result = combination(n, k); printf("C(%d, %d) = %llu\n", n, k, result); } return 0; } ``` 在这个程序中,用户输入两个整数 n 和 k,然后 `combination` 函数会计算它们的组合数并打印结果。注意,这种方法对于较大的 n 和 k 可能不太高效,因为它涉及到多次阶乘运算。实际应用中,可以考虑使用动态规划或者其他优化算法来提高效率。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值