本文根据吴恩达学习视频与黄海广博士笔记学习整理,用做自己复习用
·在神经网络的计算中,通常先有一个叫做前向暂停(forward pause)或叫做前向传播(foward propagation)的步骤,接着有一个叫做反向暂停(backward pause) 或叫做反向传播(backward propagation)的步骤。
·逻辑回归是一个用于二分类(binary classification)的算法。
·一张图片在计算机中是如何表示的:为了保存一张图片,需要保存三个矩阵,它们分别对应图片中的红、绿、蓝三种颜色通道,如果你的图片大小为64x64像素,那么你就有三个规模为64x64的矩阵,分别对应图片中红、绿、蓝三种像素的强度值。
·为了把这些像素值放到一个特征向量中,我们需要把这些像素值提取出来,然后放入一个特征向量。为了把这些像素值转换为特征向量 ,我们需要像下面这样定义一个特征向量 来表示这张图片,我们把所有的像素都取出来,例如255、231等等,直到取完所有的红色像素,接着最后是255、134、…、255、134等等,直到得到一个特征向量,把图片中所有的红、绿、蓝像素值都列出来。如果图片的大小为64x64像素,那么向量x的总维度,将是64乘以64乘以3,这是三个像素矩阵中像素的总量。在这个例子中结果为12288。
符号:
x:表示一个nx维数据,为输入数据,维度为(nx,1);
y:表示输出结果,取值为(0,1);
(x(i),y(i))(i)为右上角标记 表示第i组,训练数据或者测试数据,此处默认为训练数据;
X=[x(1),x(2),...x(m)]:表示所有训练数据集的输入值,放在一个nx * m的矩阵中,m表示样本数目
Y=[y(1),y(2)...y(m)]:表示对应训练数据集的输出值,维度为1 * m
用一对(x,y)来表示一个单独的样本,x表示nx维的 特征向量,y表示 标签(输出结果)只能为0或1.训练集由m个训练样本组成,(x(1),y(1))表示第一个样本的输入输出。
最后为了能把训练集表示得更紧凑一点,我们会定义一个矩阵用大写X的表示,它由输入向量x(1)、x(2)等组成,如下图放在矩阵的列中,所以现在我们把x(1)作为第一列放在矩阵中,x(2)作为第二列,x(m)放到第m列,然后我们就得到了训练集矩阵。