线代基础第二讲——矩阵

基础知识结构

 

求矩阵的逆:

1.定义 2.用伴随矩阵求逆矩阵 3.用初等变换求逆矩阵

这就是读者对矩阵的初步认识——表达系统信息(systematical information)

再看一个矩阵:

重要观点1:矩阵是由若干行(列)向量拼成的——上面那个矩阵可以看作是由三个行向量[1,2,3],[5,7,9]和[2,4,6]组成,也可以看作是由三个列向量[1,6,2]T,[2,7,4]T与[3,9,6]T组成。

重要观点2:矩阵不能运算,但是其若干行(列)向量之间可能存在着某种关系——你是否看到[1,2,3]和[2.4.6]这两个向量是平行的(存在线性关系),而[1,2,3]与[6,7,9]之间不存在这种线性关系,反应矩阵的本质即矩阵的秩,这个秩是2。

行列式必须是方的m*m,但矩阵不是。

二阶子式,任意在行或列中画出两条线,交叉的项形成的新的矩阵。

可以做延伸,2*2变成2*3,仍然线性无关。

1.矩阵的定义

函数相同且列数相同,称为同型矩阵。m=n时,称为方阵。

数乘矩阵保证系统性的比例不变。

转化成行列式要注意,每行提出一个k,需提出n个k。

不满足交换律

error:此处的j1改为1j。

乘法运算的规则:A的列数等于B的行数。

ABABAB不等于AAABBB

AB=0,AC=0,C=0但是B不等于C。

第五点 需要memorize

正交规范化公式证明:

将不垂直的两个向量正交化,并转化为标准向量组。

对角矩阵

正交矩阵的行向量组,两两向量正交,向量的模均为1。

(10)矩阵分块

矩阵可乘可加

横着写省纸,所以横着写省纸。

矩阵是方阵,秩如果为1,一定能写成一列乘以一行。

一行乘以一列等于主对角线元素之和(矩阵的迹)。

试算法例题

 

 

再来回顾一遍

 

如何证明一个矩阵是正交矩阵

三,矩阵的逆

A,B必须是方阵

 

AB的逆矩阵也满足穿脱原则。

(5)prove

四,伴随矩阵

注意伴随矩阵是竖着写的。这样相乘正好等于数量阵。

求元素

的代数余子式

时,要特别注意余子式

前面的符号

代数余子式的两个命题

命题 1 n阶行列式

 所以四式为|A|E.

这四种情况下乘积可交换

PROVE:

 

 

 

 

A变伴随矩阵小窍门:

求可逆矩阵的第三种方法

五,初等变换和初等矩阵

1.初等变换

(1)一个非零常数乘矩阵的某一行(列)

(2)互换矩阵中某两行(列)的位置

(3)将矩阵的某一行(列)的k倍加到另一行(列)

以上三种变换称为矩阵的初等行(列)变换,且分别称为倍乘,互换,倍加初等行(列)变换。

 

 

对(3)定理的证明:

初等矩阵的逆还是初等矩阵

左行右列定理

 

对A和E做相同的初等行变换分别得到E和A的逆。

再次复习求矩阵的逆的三种方法

 

注意左行右列的底下的序号原则是相反的。

分块矩阵中主对角线和副对角线的逆。

分块矩阵非对角线非零的情况:

副对角线有0:

左乘同行,右乘同列。

主对角线有0:

副对角线元素交换位置后,左乘同行右乘同列。

五,矩阵方程

例一

 

 

例二

 

六,等价矩阵和矩阵的等价标准型

七,矩阵的秩

 

 

因为秩的定义是,Am*n,A中任取r行,r列而成的r阶行列式,称为A的r阶子式

若有:1、存在r阶子式不为0

2、任意r+1阶子式都是0,则称A的秩为r

那么,比如有一个5阶方阵,根据定义,如果我要想它的秩是4的话,必须存在一个4阶子式不是0,而且所有5阶子式全是0,可是你都说了,这个5阶方阵可逆,即行列式不等于0,显然是矛盾的。

所以非满秩的方阵,行列为0.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值