机器学习03

本文介绍了机器学习中的决策边界概念,通过sigmoid函数建立分类问题的模型。讨论了交叉熵作为损失函数,并提及梯度下降优化方法。接着,文章探讨了过拟合问题及其对模型泛化能力的影响,提出了减少变量和正则化作为解决方案,详细解释了正则化在损失函数中的作用,包括在线性回归和逻辑回归中的应用。
摘要由CSDN通过智能技术生成

目录

决策边界

损失函数

 梯度下降

过拟合

正则化


预测的变量y为是一个离散值的情况下的分类问题,这时要运算logistic回归算法,它能让h\left ( x \right )的输出值处于区间\left [ 0,1 \right ]之间,该数值用来表示处于某一分类的概率为多大

假设h_{\theta }(x)=g(\theta ^{T}x),其中g(z)函数可以有很多,这里假设为sigmoid函数,即g(z)=\frac{1}{1+e^{-z}}

决策边界

上面这条粉红的线就叫决策边界,它将整个平面分成了两个部分,一部分为类别1,另一部分为类别2,这决策边界是假设函数的属性,不是数据集的属性

损失函数

 用于分类问题的cost(h_{\theta }(x),y)=\begin{cases} -log(h_{\theta }(x)) & \text{ if } y=1 \\ -log(1-h_{\theta }(x)) & \text{ if } y=0 \end{cases}的损失函数,即交叉熵损失函数,可以简化为cost(h_{\theta }(x),y)=-ylog(h_{\theta }(x))-(1-y)log(1-h_{\theta }(x)),二者等效,h(x)为预测结果,y为真实结果,最后整理可得J(\theta )=\frac{1}{m}\sum_{i=1}^{m}cost(h_{\theta }(x^{i}),y^{i}),即

 梯度下降

除了用梯度下降的方法进行优化以外,还可以用一些其他的方法进行优化 

过拟合

线性回归和逻辑回归在实际应用中,会出现过拟合问题,导致他们表现欠佳

过拟合问题将会在变量过多的时候出现,这时训练出的假设函数能很好地拟合训练集,损失值也十分接近0,但是它无法泛用到新的样本中,无法预测新样本

解决方案:

  • 减少样本变量的数量(可以人工选择剔除或用模型选择算法剔除)
  • 正则化:保留全部样本,减少量级或θ值的大小

正则化

如果我们的参数值\theta较小,这意味着,所选取的假设模型更为简单,更不容易出现过拟合问题

我们可以对损失函数进行修改,改为J(\theta )=\frac{1}{2m}(\sum_{i=1}^{m}cost(h_{\theta }(x^{i}),y^{i})+\lambda \sum_{j=1}^{n}\theta _{j}^{2}),后面新加的一项即为正则项,或叫惩罚项

正则化线性回归

 

正则化逻辑回归

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值