【大厂刷题】2024年 小红书春季笔试真题:小苯的点赞


在这里插入图片描述

前言

本人也是练习者,仅提供参考思路和题解。如有不正确的地方,欢迎大家评论指正,大家一起学习进步


题目: 小苯的点赞

题目描述

小红发布了n个笔记,每个笔记的点赞数为ai。小红观察到,每隔一段时间,某个笔记的点赞数就会加1。但是不会出现一个笔记点赞数连续增加的情况。也就是说,一个笔记赞数加1后,下一个加1的必然是另一个笔记。
现在小红想知道,对于每一个笔记,其赞数变成所有笔记赞数最多时,此时所有的笔记赞数之和的最小值是多少?

输入描述

第一行输入一个正整数n(1 <= n <= 105),代表笔记的数量。

第二行输入n个正整数ai(1 <= ai <= 109),代表每个笔记当前的赞数。

输出描述

输出n行,每行输出一个整数,代表第i个笔记变成所有笔记赞数最多时,此时所有的笔记赞数之和的最小值。 特殊的,如果第i个笔记永远无法变成赞数最多,则输出-1。

输入示例

3
3 1 4

输出示例

9
15
8

提示信息

对于第一个笔记,当它赞数加1时,赞数达到了4,变成所有笔记赞数最多,此时赞数之和为4+1+4=9。

对于第二个笔记,可以有以下增长方式:2->1->2->1->2->3->2,此时三个笔记的赞数都是5,赞数之和为15。

对于第三个笔记,初始时它的赞数就是最多,此时赞数之和为3+1+4=8。

时间限制:c/c++/go:1s;java:3s;其他语言:6s。


参考思路

首先
设 max_num 所有笔记中点赞数量最多的那一个笔记的点赞数,用int存储
sum为所有笔记的点赞数量总和,用 long long 存储

其次
若要计算当前笔记点赞数量最多的时候,其他笔记点赞数量总和的最小值
用贪心的想法
也就是尽快让当前笔记点赞数成为最多,而不去增加其他笔记点赞数量
但是注意!!这里题目限制同一个笔记不能连续点赞
也就意味着需要当前笔记点赞一次,其他笔记点赞一次,这样只需要计算当前点赞数什么时候成为最多点赞数,对应的其他笔记点赞数量就是最小值,直接输出即可

设最终这个笔记达到数量最多的时候的点赞数为 k
笔记总数为 n,当前考虑的是第 i 个笔记,那么除了第 i 个笔记外,其他笔记的数量为 n - 1 个。
初始状态:
之前假设所有笔记初始点赞数总和为 sum
设第 i 个笔记初始点赞数为 x,则其他 n - 1 个笔记初始点赞数总和为 sum - x

我们希望第 i 个笔记最终点赞数达到 k 并成为点赞数最多的笔记,那么其他 n - 1 个笔记的点赞数理论上最大都可以达到 k
所以这 n - 1 个笔记点赞数总和的上限为 k * (n - 1)

其他 n - 1 个笔记初始点赞数总和为 sum - x,而它们点赞数总和的上限为 k * (n - 1)。
那么在保证其他笔记点赞数不超过 k 的前提下,这些笔记还可以增加的点赞次数(也就是可操作的空间)就是上限值减去初始值,
k * (n - 1) - (sum - x)

那么当前笔记为了达到最点赞数量,需要被点赞k-x次
那么也就是需要满足:k - x <= k * (n-1) - (sum-x) + 1 即可
左边的 k - x 是当前笔记需要增加的点赞数。
右边的 k * (n - 1) - (sum - x) 是其他笔记可操作的点赞次数,加 1 是因为当前笔记有先手优势,多一次操作机会。

当这个不等式成立时,意味着在遵循 “不会出现一个笔记点赞数连续增加” 的规则下,我们有足够的操作空间来让当前笔记的点赞数达到 k 并成为点赞数最多的笔记。也就是说,我们可以合理地分配点赞操作,使得当前笔记增加 k - x 次点赞,同时其他笔记的点赞数也不会超过 k,所以此时的 k 是一个可行的点赞数。

目前问题也就是转化成找到第一个可行的最高点赞数k

所以说从 max_num 开始一直累加寻找,如果使用遍历也就是暴力的方法,一般会超时

所以应该用二分法去寻找
使用二分法可以将时间复杂度降低至O(nlog©),C是一个大常数,即二分的上界
下界必然是max_num
那么上届就设定一个很大的常数即可

为什么能用二分法呢?
范围明确:我们可以清晰地确定 k 的取值范围。其下界是所有笔记中当前的最大点赞数 mx,因为要让某个笔记成为点赞数最高的,其最终点赞数必然不小于当前的最大值。而上界可以设置为一个较大的常数,虽然这个上界可能不是精确的,但由于二分查找的特性,上界设置大一些对整体时间复杂度影响不大。

单调性:k 的可行性具有单调性。如果对于某个 k 值,当前笔记能够在满足 “不能连续对同一个笔记进行点赞” 的规则下成为点赞数最高的,那么对于所有大于 k 的值,该笔记同样也能成为点赞数最高的;反之,如果某个 k 值不可行,那么所有小于 k 的值也都不可行。这种单调性满足二分查找的条件。

最后,当找到第一个可行的最高点赞数 k 后,计算此时所有笔记的赞数总和。
可以通过 sum + (2 * (k - x) - 1) 来计算,其中 2 * (k - x) 表示给当前笔记和其他笔记各点赞一次的总次数,但最后一次只给当前笔记点赞,所以要减去 1。

复杂度分析

  • 时间复杂度:O(nlog©),C是一个常数
  • 空间复杂度:O(1)

参考解答

C++ 参考答案

#include <iostream>
#include <vector>
#include <algorithm>
#include <numeric>

#define endl '\n'
using namespace std;

bool check(const long long& k, int x, const long long& sum, int n) {
    long long need_like_nums = k - x;
    long long valid_op = k * (n - 1) - (sum - x);
    return need_like_nums <= valid_op + 1;
}

int main() {
    int n;
    scanf("%d", &n);
    vector<int> nums(n);
    for (int i = 0; i < n; ++i) {
        scanf("%d", &nums[i]);
    }

    int max_num = *max_element(nums.begin(), nums.end());
    long long sum = accumulate(nums.begin(), nums.end(), 0LL);
	// 处理只有一个笔记的特殊情况
    if (n == 1) {
        cout << nums[0] << endl;
        return 0;
    }
	// 处理只有两个笔记的特殊情况
    if (n == 2) {
        for (int i = 0; i < 2; ++i) {
            if (nums[i] == max_num) cout << sum << endl;
            else if (nums[i] == max_num - 1) cout <<  sum + 1 << endl;
            else cout << -1 << endl;
        }
        return 0;
    }
    
	// 遍历每个笔记,计算其成为点赞数最多时的总点赞数
    for (int i = 0; i < n; ++i) {
    	// 如果当前笔记点赞数已经是最大,直接输出总和
        if (nums[i] == max_num) {
            cout << sum << endl;
            continue;
        }
        long long left = max_num, right = 1e12, mid;
		// 二分查找满足条件的最小目标点赞数 k
        while (left <= right) {
            mid = (left + right) >> 1;
            if (check(mid, nums[i], sum, n)) {
                right = mid - 1;
            } else {
                left = mid + 1;
            }
        }
        cout << sum + (left - nums[i]) * 2 - 1 << endl;
    }

    return 0;
}

总结

贪心思想 + 二分查找
需要对二分查找很熟练,并且需要一定的对满足题目的条件转化能力

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

__echooo

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值