流体力学----连续介质模型

1. 流体的密度是否处处相同呢?

我们假设有一种高科技的管子,很细很细,一插入就可以显示出这个点的密度(虽然这种管子可能还在遥远的将来,但不妨假设一下)。可想而知,你在同一个地方插几下,都可能得到完全不一样的结果,比如第一次插的时候有1个分子在里面,第二次插到了3个分子,第三次运气不好,一个也没插到。所以:流体的密度其实是在变化的!

那我们把这个管子做的大一点好吗?一次可以插比如说一亿个分子,这样来说的话确实每次都插到差不多的分子数,但是可能会出现这种情况,明明是不均匀的两部分却因为你管子太粗了最后你说这个地方的密度是一个定值!比如说一级楼梯,楼梯下方有很多珠子,在水平互相乱撞,楼梯上一级却一个珠子没有,这时候你说:哇,这个地方的珠子密度差不多是定值。这显然不合适,因为楼梯上根本没有珠子,珠子都在楼梯下部分。

2. 怎样定义流体的密度?

那如何定义密度,或者其他一系列物理量呢?我们引入了连续介质模型,就假设我们找到了这样粗的一根管子,在微观角度来看它是足够粗的,以至于多次统计后可以得到一个比较稳定的值,在宏观角度来看它又是足够细的,以便防止像刚才我们数珠子的闹剧发生。

这就是微观足够大,宏观足够小!

于是我们得到了流体密度的定义:\rho = \lim_{\delta V\rightarrow \delta V^{*}} \frac{\delta m}{\delta V}.

3. 注意事项

待补。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值