书生大模型第一课笔记

1. **大模型的发展背景**:大模型被视为推动通用人工智能发展的关键路径。自本世纪初至2021-2022年,研究焦点主要集中在针对特定任务的专用模型。然而,近两年来,研究趋势已转向开发能够处理多任务和多模态的通用大模型。

2. **书生浦语大模型的特点**:书生浦语大模型是一个全面开源的系统,支持高达20万汉字的输入,创下了全球大模型产品中支持的最长上下文输入记录。该模型不仅具备超长上下文处理能力,还集成了推理、数学、代码、对话和创作等多项功能,并具备工具调用能力。

3. **开源历程**:自发布以来,书生浦语大模型经历了迅速的迭代更新。这包括升级至千亿参数规模、支持8K语境、推出全免费商用的7B开源模型及全链条工具体系、发布多模态预训练语料库,以及对话模型的升级等。

4. **回归语言建模的本质**:深入探讨语言模型的核心价值和应用。

5. **书生浦语2.0的主要亮点**:GSM8K和MATH作为当前数学评测的典型数据集,展示了书生浦语2.0在数学推理能力上的显著提升。

6. **从模型到应用**:为了简化模型到实际应用的转换过程,开发了一套全面的开源工具体系。这套体系涵盖了数据集、预训练框架、微调框架、部署解决方案、评测体系和智能体框架等,支持从数据准备到模型训练、微调、部署及评测的全过程,旨在为开发者和研究者提供更便捷的大模型应用开发环境。

7. **工具体系详解**:
   - **微调技术**:包括增量续训和有监督微调,以提升模型性能。
   - **高效微调框架XTuner**:优化微调过程,提高效率。
   - **评测框架OpenCompass**:开发并开源,用于评估模型性能。
   - **CompassKit工具链和CompassHub基准社区**:提供全面的工具支持和社区交流平台。
   - **模型的部署**:确保模型能够高效、稳定地部署到实际应用中。
   - **智能体框架Lagent和多模态智能体工具箱AgentLego**:增强模型的交互和多模态处理能力。

### 书生大模型 L1G1000 技术文档概述 书生大模型全链路开源体系提供了详尽的技术文档,涵盖了从基础架构搭建到具体应用场景实现的各个方面[^3]。该体系由上海人工智能实验室开发,旨在为用户提供全面的支持。 #### 主要组成部分 - **数据处理工具**:提供了一系列高效的数据预处理方法和技术,确保输入数据的质量和一致性。 - **技术栈**:包括但不限于自然语言处理(NLP),计算机视觉(CV)等领域所需的各种算法库和支持框架[^2]。 - **应用实例** - **MINSEARCH**: 基于AI驱动的搜索引擎解决方案,利用先进的检索技术和机器学习优化搜索体验。 - **RAG (Retrieval-Augmented Generation)**: 将传统的信息检索系统与现代的语言生成能力相结合,实现了更精准的内容理解和表达转换服务。 - **LabelLLM Project**: 提供了一套完整的自动化标签生成流程,极大地方便了NLP任务中的数据标注工作。 - **OpenCompass Platform**: 构建了一个公开透明的大规模评测环境,有助于推动整个行业的健康发展并提高模型评估的标准性。 ```python # 示例代码片段展示如何加载预训练好的BookSheng模型进行推理预测 from transformers import AutoModelForCausalLM, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("shanghaiai/booksheng-l1g1000") model = AutoModelForCausalLM.from_pretrained("shanghaiai/booksheng-l1g1000") input_text = "你好世界" inputs = tokenizer(input_text, return_tensors="pt") outputs = model.generate(**inputs) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` 此段Python脚本展示了通过Hugging Face Transformers库快速上手使用书生大模型的方法之一。只需几行简单的命令即可完成对给定文本序列的编码解码操作,并获得相应的输出结果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值