1. **大模型的发展背景**:大模型被视为推动通用人工智能发展的关键路径。自本世纪初至2021-2022年,研究焦点主要集中在针对特定任务的专用模型。然而,近两年来,研究趋势已转向开发能够处理多任务和多模态的通用大模型。
2. **书生浦语大模型的特点**:书生浦语大模型是一个全面开源的系统,支持高达20万汉字的输入,创下了全球大模型产品中支持的最长上下文输入记录。该模型不仅具备超长上下文处理能力,还集成了推理、数学、代码、对话和创作等多项功能,并具备工具调用能力。
3. **开源历程**:自发布以来,书生浦语大模型经历了迅速的迭代更新。这包括升级至千亿参数规模、支持8K语境、推出全免费商用的7B开源模型及全链条工具体系、发布多模态预训练语料库,以及对话模型的升级等。
4. **回归语言建模的本质**:深入探讨语言模型的核心价值和应用。
5. **书生浦语2.0的主要亮点**:GSM8K和MATH作为当前数学评测的典型数据集,展示了书生浦语2.0在数学推理能力上的显著提升。
6. **从模型到应用**:为了简化模型到实际应用的转换过程,开发了一套全面的开源工具体系。这套体系涵盖了数据集、预训练框架、微调框架、部署解决方案、评测体系和智能体框架等,支持从数据准备到模型训练、微调、部署及评测的全过程,旨在为开发者和研究者提供更便捷的大模型应用开发环境。
7. **工具体系详解**:
- **微调技术**:包括增量续训和有监督微调,以提升模型性能。
- **高效微调框架XTuner**:优化微调过程,提高效率。
- **评测框架OpenCompass**:开发并开源,用于评估模型性能。
- **CompassKit工具链和CompassHub基准社区**:提供全面的工具支持和社区交流平台。
- **模型的部署**:确保模型能够高效、稳定地部署到实际应用中。
- **智能体框架Lagent和多模态智能体工具箱AgentLego**:增强模型的交互和多模态处理能力。