CUDA12.1Torch2.1Python3.10安装记录(CUDA12.3)

请提前进行anaconda和pycharm安装

1.显卡4080打开anaconda prompt面板输入以下代码查看CUDA版本为12.3(CUDA Driver API版本)(还可以更新显卡驱动)

> nvidia-smi

2.安装CUDA Toolkit(Runtime API)

cuda版本12.1对应torch2.1.0,cuda12.1对应的cudnn是8.9.6.50

CUDA官网下载找到自己合适的版本,并将解压后的Cudnn复制到CUDA根目录下面。输入以下代码查看安装的CUDA版本,我的版本是12.1(Runtime API小于等于Driver API就可以)

CUDA官网下载:CUDA Toolkit Archive | NVIDIA Developer

安装教程

> nvcc -V  查看安装后版本

3.Cudnn下载 

Cudnn官网下载找到合适的版本:Index of /compute/cudnn/redist/cudnn/windows-x86_64

 4.创建pytorch环境,激活环境

> create -n pytorchGPU python=3.10

> activate pytorchGPU

5.安装pytorch(torch2.1.0;torchvision-0.16.0;torchaudio-2.1.0)

从镜像网站下载轮子:镜像网站  (耐心下载)

找到适配的三个轮子进行下载,cu121指cuda12.1,cp指python3.10。

打开anaconda prompt面板,激活创建的环境activate pytorchGPU(下面红色选框为激活环境),将路径改为下载3个文件的文件夹路径(绿色),用三条语句进行安装(蓝色)用TAB快捷键可以快速补全文件名。

> pip install "torch-2.1.0+cu121-cp310-cp310-win_amd64.whl"
> pip install "torchvision-0.16.0+cu121-cp310-cp310-win_amd64.whl"
> pip install "torchaudio-2.1.0+cu121-cp310-cp310-win_amd64.whl"

安装完成后进行检查

导入pytorch包显示numpy不兼容,更换numpy版本(查找与python对应的numpy版本)

> pip install numpy==1.25.0

 继续检查

> python

>>> import pytorch

>>> print(torch.cuda.is_available())  返回“TURE”证明可用

>>> print(torch.cuda.get_device_name(0)) 

>>> print(torch.cuda.device_count())

>>> print(torch.cuda.current_device())

结束 

整理来自:

nvcc -V和nvidia-smi出现的cuda版本不同

RTX4070ti-40系列显卡配置pytorch深度学习环境过程

Numpy兼容报错:A module that was compiled using NumPy 1.x cannot be run inNumPy 2.0.0 as it may crash

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值