请提前进行anaconda和pycharm安装
1.显卡4080打开anaconda prompt面板输入以下代码查看CUDA版本为12.3(CUDA Driver API版本)(还可以更新显卡驱动)
> nvidia-smi
2.安装CUDA Toolkit(Runtime API)
cuda版本12.1对应torch2.1.0,cuda12.1对应的cudnn是8.9.6.50
CUDA官网下载找到自己合适的版本,并将解压后的Cudnn复制到CUDA根目录下面。输入以下代码查看安装的CUDA版本,我的版本是12.1(Runtime API小于等于Driver API就可以)
CUDA官网下载:CUDA Toolkit Archive | NVIDIA Developer
> nvcc -V 查看安装后版本
3.Cudnn下载
Cudnn官网下载找到合适的版本:Index of /compute/cudnn/redist/cudnn/windows-x86_64
4.创建pytorch环境,激活环境
> create -n pytorchGPU python=3.10
> activate pytorchGPU
5.安装pytorch(torch2.1.0;torchvision-0.16.0;torchaudio-2.1.0)
从镜像网站下载轮子:镜像网站 (耐心下载)
找到适配的三个轮子进行下载,cu121指cuda12.1,cp指python3.10。
打开anaconda prompt面板,激活创建的环境activate pytorchGPU(下面红色选框为激活环境),将路径改为下载3个文件的文件夹路径(绿色),用三条语句进行安装(蓝色)用TAB快捷键可以快速补全文件名。
> pip install "torch-2.1.0+cu121-cp310-cp310-win_amd64.whl"
> pip install "torchvision-0.16.0+cu121-cp310-cp310-win_amd64.whl"
> pip install "torchaudio-2.1.0+cu121-cp310-cp310-win_amd64.whl"
安装完成后进行检查
导入pytorch包显示numpy不兼容,更换numpy版本(查找与python对应的numpy版本)
> pip install numpy==1.25.0
继续检查
> python
>>> import pytorch
>>> print(torch.cuda.is_available()) 返回“TURE”证明可用
>>> print(torch.cuda.get_device_name(0))
>>> print(torch.cuda.device_count())
>>> print(torch.cuda.current_device())
结束
整理来自:
RTX4070ti-40系列显卡配置pytorch深度学习环境过程
Numpy兼容报错:A module that was compiled using NumPy 1.x cannot be run inNumPy 2.0.0 as it may crash