Logistic回归分析——logistic回归,附与OR优势比关系

逻辑回归(Logistic Regression)属于概率型非线性回归,是一种广泛用于研究二分类(可扩展到多分类)问题的统计方法,流行病学研究中,经常需要分析二分类变量,如是否发病、新药是否有效、受试者是否死亡等。

一、基本概念

1、回归模型

设因变量Y为二值变量,取值为1(出现阳性结果,如发病)、0(出现阴性结果,如未发病),另外有影响Y取值的m个自变量X1,.......,Xm。

记P=P(Y=1 | X1,......,Xm),表示在m个自变量作用下阳性结果发生的概率。

(1)式左边为阳性和阴性结果发生概率之比的自然对数,成为P的logit变换,记为logit P。

2、参数意义

常数项B0表示暴露剂量为0时个体阳性与阴性之比的自然对数,回归系数Bj表示自变量Xj改变一个单位时logit P的改变量。

回归系数与优势比OR(odds ratio)关系如下:

若为某些罕见疾病,优势比OR可以作为相对危险度RR(relative risk)的近似估计。

### SPSS 中二元 Logistic 回归分析缺少因素的原因及解决方法 在使用 SPSS 进行二元 Logistic 回归分析时,可能会发现某些自变量未能出现在最终的结果中。这种现象通常是由于以下几个原因造成的: #### 1. **参照对比项设置** 当模型中的某个自变量为分类变量时,SPSS 默认会选择其中一个类别作为参照对比项(reference category),并将其排除在外以避免共线性问题[^1]。因此,在输出结果中不会显示该参照对比项的相关统计指标(如 P 值、OR 值等)。这是正常的统计学处理方式。 #### 2. **完全分离问题(Complete Separation)** 如果某一自变量能够完美地区分因变量的两类结果(即存在完全分离情况),SPSS 的算法可能无法收敛,从而导致该变量被自动移除或不显示其参数估计值[^5]。这种情况可以通过检查数据分布来确认是否存在完全分离的现象。 #### 3. **多重共线性** 当多个自变量之间高度相关时,可能导致其中一些变量被剔除出模型,或者它们的标准误变得非常大而失去意义。这通常通过方差膨胀因子(VIF)或其他诊断工具检测出来[^4]。为了缓解这一问题,可以考虑删除冗余变量或将高维特征降维后再纳入模型。 #### 解决方案 针对上述几种可能性,以下是具体的应对措施: - 对于**参照对比项缺失**的情况无需特别处理,只需理解它是如何影响其他类别的解释即可; - 如果怀疑是**完全分离问题**引起的,则尝试采用Firth修正法或者其他适合的方法重新拟合模型; - 当遇到明显的**多重共线性**迹象时,应该先评估哪些变量间的关系最为紧密,并决定保留最具有代表性的几个进入下一步计算过程之中。 下面给出一段简单的R代码用于演示如何利用glm函数配合firth逻辑回归包解决潜在存在的完全分离状况下的建模难题: ```r library(logistf) # 加载数据集 data <- read.csv("your_data_file.csv") # 执行 Firth 逻辑回归 model_firth <- logistf(formula = Y ~ X1 + X2 + X3, data = data) summary(model_firth) ``` 此段脚本展示了另一种途径去克服传统最大似然估计所面临的挑战之一——即面对极端情形下样本比例失衡所带来的不稳定系数估值问题。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值