神经网络与深度学习(基于动手学深度学习pytorch)(四)

本文详细介绍了循环神经网络的基础概念,包括RNN的搭建、GRU和LSTM的门控机制,以及深度循环神经网络的扩展。通过实例展示了如何实现从零开始的RNN模型,并讨论了梯度裁剪等训练技巧。
摘要由CSDN通过智能技术生成

循环神经网络与NLP

1 模型序列

2.RNN网络

2.1RNN网络搭建

import math
import torch
from torch import nn
from torch.nn import functional as F
from d2l import torch as d2l
batch_size, num_steps = 32, 35
train_iter, vocab = d2l.load_data_time_machine(batch_size, num_steps)
F.one_hot(torch.tensor([0, 2]), len(vocab))
X = torch.arange(10).reshape((2, 5))
F.one_hot(X.T, 28).shape
def get_params(vocab_size, num_hiddens, device):
    num_inputs = num_outputs = vocab_size
    def normal(shape):
        return torch.randn(size=shape, device=device) * 0.01
    # 隐藏层参数
    W_xh = normal((num_inputs, num_hiddens))
    W_hh = normal((num_hiddens, num_hiddens))
    b_h = torch.zeros(num_hiddens, device=device)
    # 输出层参数
    W_hq = normal((num_hiddens, num_outputs))
    b_q = torch.zeros(num_outputs, device=device)
    # 附加梯度
    params = [W_xh, W_hh, b_h, W_hq, b_q]
    for param in params:
        param.requires_grad_(True)
    return params
def init_rnn_state(batch_size, num_hiddens, device):
    return (torch.zeros((batch_size, num_hiddens), device=device), )
def rnn(inputs, state, params):
    # inputs的形状:(时间步数量,批量大小,词表大小)
    W_xh, W_hh, b_h, W_hq, b_q = params
    H, = state
    outputs = []
    # X的形状:(批量大小,词表大小)
    for X in inputs:
        H = torch.tanh(torch.mm(X, W_xh) + torch.mm(H, W_hh) + b_h)
        Y = torch.mm(H, W_hq) + b_q
        outputs.append(Y)
    return torch.cat(outputs, dim=0), (H,)
class RNNModelScratch: #@save
    """从零开始实现的循环神经网络模型"""
    def __init__(self, vocab_size, num_hiddens, device,
                get_params, init_state, forward_fn):
        self.vocab_size, self.num_hiddens = vocab_size, num_hiddens
        self.params = get_params(vocab_size, num_hiddens, device)
        self.init_state, self.forward_fn = init_state, forward_fn
    def __call__(self, X, state):
        X = F.one_hot(X.T, self.vocab_size).type(torch.float32)
        return self.forward_fn(X, state, self.params)
    def begin_state(self, batch_size, device):
        return self.init_state(batch_size, self.num_hiddens, device)
num_hiddens = 512
net = RNNModelScratch(len(vocab), num_hiddens, d2l.try_gpu(), get_params,
                      init_rnn_state, rnn)
state = net.begin_state(X.shape[0], d2l.try_gpu())
Y, new_state = net(X.to(d2l.try_gpu()), state)
Y.shape, len(new_state), new_state[0].shape
def predict_ch8(prefix, num_preds, net, vocab, device): #@save
    """在prefix后面生成新字符"""
    state = net.begin_state(batch_size=1, device=device)
    outputs = [vocab[prefix[0]]]
    get_input = lambda: torch.tensor([outputs[-1]], device=device).reshape((1, 1))
    for y in prefix[1:]: # 预热期
        _, state = net(get_input(), state)
        outputs.append(vocab[y])
    for _ in range(num_preds): # 预测num_preds步
        y, state = net(get_input(), state)
        outputs.append(int(y.argmax(dim=1).reshape(1)))
    return ''.join([vocab.idx_to_token[i] for i in outputs])
predict_ch8('time traveller ', 10, net, vocab, d2l.try_gpu())
def grad_clipping(net, theta): #@save
    """裁剪梯度"""
    if isinstance(net, nn.Module):
       params = [p for p in net.parameters() if p.requires_grad]
    else:
       params = net.params
    norm = torch.sqrt(sum(torch.sum((p.grad ** 2)) for p in params))
    if norm > theta:
       for param in params:
           param.grad[:] *= theta / norm
#@save
def train_epoch_ch8(net, train_iter, loss, updater, device, use_random_iter):
    """训练网络一个迭代周期(定义见第8章)"""
    state, timer = None, d2l.Timer()
    metric = d2l.Accumulator(2) # 训练损失之和,词元数量
    for X, Y in train_iter:
        if state is None or use_random_iter:
        # 在第一次迭代或使用随机抽样时初始化state
           state = net.begin_state(batch_size=X.shape[0], device=device)
        else:
           if isinstance(net, nn.Module) and not isinstance(state, tuple):
              # state对于nn.GRU是个张量
              state.detach_()
           else:
            # state对于nn.LSTM或对于我们从零开始实现的模型是个张量
              for s in state:
                  s.detach_()
        y = Y.T.reshape(-1)
        X, y = X.to(device), y.to(device)
        y_hat, state = net(X, state)
        l = loss(y_hat, y.long()).mean()
        if isinstance(updater, torch.optim.Optimizer):
            updater.zero_grad()
            l.backward()
            grad_clipping(net, 1)
            updater.step()
        else:
            l.backward()
            grad_clipping(net, 1)
            # 因为已经调用了mean函数
            updater(batch_size=1)
        metric.add(l * y.numel(), y.numel())
    return math.exp(metric[0] / metric[1]), metric[1] / timer.stop()
#@save
def train_ch8(net, train_iter, vocab, lr, num_epochs, device,
              use_random_iter=False):
    """训练模型(定义见第8章)"""
    loss = nn.CrossEntropyLoss()
    animator = d2l.Animator(xlabel='epoch', ylabel='perplexity',
                            legend=['train'], xlim=[10, num_epochs])
    # 初始化
    if isinstance(net, nn.Module):
        updater = torch.optim.SGD(net.parameters(), lr)
    else:
        updater = lambda batch_size: d2l.sgd(net.params, lr, batch_size)
    predict = lambda prefix: predict_ch8(prefix, 50, net, vocab, device)
    # 训练和预测
    for epoch in range(num_epochs):
        ppl, speed = train_epoch_ch8(
           net, train_iter, loss, updater, device, use_random_iter)
        if (epoch + 1) % 10 == 0:
           print(predict('time traveller'))
           animator.add(epoch + 1, [ppl])
    print(f'困惑度 {ppl:.1f}, {speed:.1f} 词元/秒 {str(device)}')
    print(predict('time traveller'))
    print(predict('traveller'))
num_epochs, lr = 500, 1
train_ch8(net, train_iter, vocab, lr, num_epochs, d2l.try_gpu())

 

3  门控循环单元GRU

GRU(Gate Recurrent Unit)是循环神经网络(RNN)的一种,可以解决RNN中不能长期记忆和反向传播中的梯度等问题,与LSTM的作用类似,不过比LSTM简单,容易进行训练。

GRU模型中有两个门,重置门和更新门

$\begin{aligned} &z_{t}=\sigma\left(W_{z}\cdot[h_{t-1},x_{t}]\right) \\ &r_{t}=\sigma\left(W_{r}\cdot[h_{t-1},x_{t}]\right) \\ &\tilde{h}_{t}=\mathrm{tanh}\left(W\cdot[r_{t}*h_{t-1},x_{t}]\right) \\ &h_{t}=(1-z_{t})*h_{t-1}+z_{t}*\tilde{h}_{t} \end{aligned}$ 

4 长短时记忆 LSTM

LSTM的全称是Long Short Term Memory,它是具有记忆长短期信息的能力的神经网络,是一种改进之后的循环神经网络。提出的动机是为了解决普通RNN网络的长期依赖问题(具体细节直接搜索 )。原始 RNN 的隐藏层只有一个状态,即h hh,它对于短期的输入非常敏感。LSTM再增加一个状态,即C CC,让它来保存长期的状态,称为单元状态(cell state)。

RNN是一个链式结构,每个时间片使用的是相同的参数。下面是典型的网络结构图:

5 深度循环神经网络

深度循环神经网络(Deep Recurrent Neural Network,简称DRNN)是一种循环神经网络(Recurrent Neural Network,简称RNN)的扩展形式,它具有多个隐藏层,并且可以处理长度不固定的序列数据。与传统的RNN相比,DRNN在每个时间步上执行多次非线性转换,以便对更长的序列数据进行建模。

在DRNN中,每个时间步的输入和隐藏状态都是向量形式的。网络中的每个隐藏层都有自己的权重矩阵,并且这些权重矩阵可以共同对输入和前一个隐藏层的状态进行转换。这使得DRNN能够通过多次非线性变换来学习更高级别的特征,从而提高其在序列数据上的建模能力。

DRNN可以应用于多种领域,如语音识别、自然语言处理、图像处理等。例如,在自然语言处理领域,DRNN可以用于处理不定长的文本序列,并进行情感分析、语音识别和机器翻译等任务。

 

 

 

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值