自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(13)
  • 收藏
  • 关注

原创 (NeurIPS | 2024)SOFTS:基于序列核心融合的高效多元时间序列预测

摘要 本文提出了一种高效的多元时间序列预测模型SOFTS,通过创新的星形聚合-重分配(STAR)模块解决现有方法在通道独立性和相关性之间的权衡问题。SOFTS采用集中式策略,先聚合所有通道信息形成全局核心表示,再将其与各通道局部特征融合,实现高效通道交互。实验表明,该模型以线性复杂度在多个数据集上超越现有最优方法,同时STAR模块展现出良好的通用性,可适配多种预测架构。

2025-08-24 20:49:29 326

原创 (AAAI | 2025)用于时间序列预测的自适应多尺度分解框架

本文提出了一种基于MLP的自适应多尺度分解(AMD)框架用于时间序列预测。该框架通过多尺度可分解混合(MDM)模块将时间序列分解为不同时间尺度的模式,利用双依赖交互(DDI)模块建模时间和通道维度的依赖关系,并采用自适应多预测器合成(AMS)模块根据自相关性优化多尺度数据整合。实验表明,AMD框架在保持计算效率的同时,能够有效捕捉复杂时间序列中的多尺度交织模式,在多个数据集上实现了SOTA性能。相比基于Transformer的方法,AMD具有更低计算复杂度;相比传统MLP方法它克服了线性映射的信息瓶颈问题。

2025-08-12 20:53:19 1224

原创 (ICLR | 2023)PatchTST:基于Transformer的长时序预测

我们提出了一种高效的基于 Transformer 的模型设计,用于多元时间序列预测和自监督表示学习。该设计基于两个关键组件:(i)将时间序列分割为子序列级别的补丁,作为 Transformer 的输入 token;(ii)通道独立性,即每个通道包含一个单变量时间序列,所有序列共享相同的嵌入和 Transformer 权重。分块设计自然具有三重优势:在嵌入中保留局部语义信息;在相同回溯窗口下,注意力图的计算和内存使用量呈二次方减少;模型能够关注更长的历史数据。

2025-07-15 16:03:47 376

原创 (ICLR | 2024) iTransformer:对于时间序列预测极为高效的反向Transform

iTransformer提出了一种创新架构,通过倒置传统Transformer的维度应用方式来解决时间序列预测中的关键问题。传统方法将同一时间戳的多变量数据嵌入为时间标记,导致变量相关性丢失和注意力机制失效。iTransformer则将每个变量的整个时间序列独立嵌入为变量标记,使注意力机制能有效捕捉多变量相关性,同时利用前馈网络学习序列表示。这一简单但根本性的改变使模型在多个真实数据集上达到了最先进性能,显著提升了预测准确性、变量泛化能力和对长序列的处理能力。

2025-06-23 20:08:27 1002

原创 (ICML Oral | 2024)SparseTSF:使用 1k 个参数对长期时间序列预测进行建模

SparseTSF:一种超轻量级时间序列预测模型 本文提出SparseTSF模型,仅需1k参数即可实现长期时间序列预测。其核心创新是跨周期稀疏预测技术,通过将原始序列下采样为周期性子序列,分离周期性和趋势特征。该方法利用参数共享的全连接层进行跨周期趋势预测,显著降低了模型复杂度。实验证明,SparseTSF在极少量参数下仍保持优越性能,特别适合计算资源受限的场景。该模型展现出良好的泛化能力,为轻量化时间序列预测提供了新思路。

2025-06-02 15:18:11 1098

原创 (2024 | ECAI)TimeMachine:四曼巴模型助力时间序列长期预测

对于长期时间序列预测来说,目前仍然存在捕获长期依赖性、实现线性可扩展性和保持计算效率等困难,因此本文提出了 TimeMachine,它利用 Mamba 来捕获多元时间序列数据中的长期依赖性,同时保持线性可扩展性和较小的内存占用。

2025-05-06 17:15:18 1116

原创 SimpleTM:多元时间序列预测的简单基线

本文提出了一种新颖的多变量时间序列(MTS)分析方法,该方法融合了基于小波的简单标记化方案和能够捕捉多尺度时间动态与复杂通道间关系的广义自注意力机制。实证结果表明,在各类 MTS 任务中,我们的方法相对于大多数现有基线模型表现出具有竞争力的性能。实验显示,利用通道间依赖关系并非总能提升性能,其效果因数据集而异。尽管当前架构尚无法轻松扩展至逐个标记生成场景,但其设计简洁,可为更复杂的方法提供一个合理的轻量基线。

2025-04-26 20:51:41 1379

原创 2025 | Nature(TabPFN)准确预测小样本数据的表格基础模型

论文提出了一种新的表格基础模型 TabPFN(Tabular Prior-data Fitted Network)。该模型基于生成式Transformer架构,通过在数百万个合成数据集上进行训练,实现了对小到中型表格数据(样本量≤10,000,特征数≤500)的高效预测。实验表明,TabPFN在分类和回归任务中显著优于现有方法,例如在分类任务中以2.8秒的推理时间超越经过4小时调优的CatBoost集成模型(速度提升5,140倍),同时具备生成数据、密度估计和可解释性等基础模型特性。

2025-04-14 11:58:05 1991

原创 (AAAI | 2024)释放Patch的力量:基于Patch的MLP在长期时间序列预测中的应用

最近许多研究都试图改进Transformer的体系结构,以证明其在长期时间序列预测(LTSF)任务中的有效性。尽管性能不断提高,超越了许多线性预测模型,但作者仍然对Transformer作为LTSF解决方案持怀疑态度。作者将这些模型的有效性主要归因于所采用的Patch机制,该机制在一定程度上增强了序列局部性,但未能完全解决固有的排列不变自注意力机制导致的时间信息丢失问题。进一步的研究表明,用Patch机制增强的简单线性层可能优于复杂的基于Transformer的LTSF模型。

2025-03-29 14:46:52 1021 2

原创 DUET:双向聚类增强的多变量时间序列预测

本文提出了一种名为DUET(Dual Clustering Enhanced Multivariate Time Series Forecasting)的框架,用于提升多变量时间序列预测的性能。DUET通过在时间维度和通道维度引入双重聚类机制,分别建模时间异质性和通道间复杂关系,从而有效应对多变量时间序列预测中的两大挑战:时间分布偏移(Temporal Distribution Shift, TDS)和通道间复杂关联。

2025-02-11 14:33:07 2078

原创 MSGNet:多尺度序列间相关性学习的多变量时间序列预测

多元时间序列预测是各个学科中持续存在的挑战。时间序列数据通常表现出不同的序列内和序列间相关性,导致了复杂和交织的依赖性,这已经成为众多研究的焦点。本文引入了MSGNet,这是一种高级深度学习模型,该模型通过结合频域分析与自适应图卷积技术,旨在高效捕捉跨不同时间尺度的多变量时间序列之间的相互依赖关系。

2025-01-14 15:32:52 1644

原创 Informer:超越Transformer的长序列时序预测模型

许多实际应用都需要对长序列时间序列进行预测,如电力消费规划。长序列时间序列预测(LSTF)要求模型具有较高的预测能力,即能够有效地捕捉输出与输入之间的长期依赖性耦合。最近的研究表明,Transformer 具有提高预测能力的潜力。然而,Transformer 有几个严重的问题使其不能直接应用于 LSTF,包括二次时间复杂度、高内存使用率和编码器-解码器架构的固有限制。

2025-01-08 15:23:08 2223

原创 基于不变学习的分布外泛化时间序列预测

文章的主要研究内容是针对时间序列预测(Time-series forecasting—TSF)中的分布外(Out-of-Distribution—OOD)泛化问题,通过不变学习(Invariant Learning)来减轻这种固有的OOD问题。由于时间序列预测中的核心变量未被观测到,输入可能无法充分确定时间序列预测中的目标变量,从而打破了传统的不变学习假设。时间序列数据集缺乏足够的环境标签,而现有的环境推理方法并不适合时序预测。

2025-01-04 11:39:26 1260

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除