在技术驱动的新时代,人工智能(AI)与国防安防的结合正在掀起一场革命性的变革。传统安全防护体系通常依赖于人力监控与固定规则,但在面对快速变化的威胁时,其反应速度和决策能力往往显得捉襟见肘。而AI的引入,不仅提升了感知与分析的效率,还为国防与安防提供了全新的作战模式和防护理念。
从边境巡逻的无人机智能侦查,到城市安防的实时监控预警,再到军事领域的自主作战系统,AI正以前所未有的速度融入各个领域。通过深度学习、自然语言处理和模式识别技术,AI能够迅速识别潜在威胁,优化资源配置,并在毫秒级别实现决策。这种速度和精准度,将成为未来应对复杂风险环境的核心竞争力。
那么,这一技术的崛起到底会如何影响未来战场?它又将如何改变作战单位的组织形态与战术设计?
根据硅谷科技评论数据库(svtr.ai),AI+国防安防以过亿的平均融资金额,成为最为[吸金能力最强的AI应用赛道]之一。全球有30多家初创公司获得知名机构的押注,其中包括我们深度分析过[Founders Fund的明星项目Andruil],来自[斯坦福的军事情报公司Vannevar Labs]。今天,让们一起看看这些公司和背后的创始人。
Top 1:[Anduril]
2017年成立于美国加州欧文,专注于开发先进国防技术,包括自主系统、人工智能和机器人技术。完成15亿美元融资,本轮估值为125亿美元,投资方为之前的投资者Founders Fund(将在此次交易中投资4亿美元)和Sands Capital。
Palmer Freeman Luckey,Anduril Industries和Oculus VR创始人。他由母亲在家中教育,参加帆船课程,并对电子和工程产生了浓厚的兴趣。从十四岁起,他开始在Golden West College和Long Beach City College学习,然后在2010年进入加州州立大学长滩分校。还在南加州大学创意技术研究所的混合现实实验室兼职工程师,为BRAVEMIND项目设计经济实惠的虚拟现实系统,这是美国陆军研究实验室治疗PTSD退伍军人的一项努力。
Top 2:Helsing
2021年成立于德国柏林,开发软件旨在增强无人机和喷气式战斗机等武器能力,并改善战场决策。完成4.87亿美元融资,投资方为General Catalyst、Accel、Lightspeed Venture Partners、Plural、Greenoaks Capital Management 和硅谷投资者 Elad Gil。公司估值54亿美元,累计融资额8.4亿美元。
Dr. Gundbert Scherf,Helsing联合创始人兼联合首席执行官。曾是McKinsey & Company合伙人,曾是德国联邦国防部特别顾问。曾就读于剑桥大学,获得哲学硕士学位(一级荣誉),并曾是玛丽·居里学者。还曾就读于柏林自由大学,获得经济政策/政治经济学博士学位。Gundbert Scherf 与联合创始人 Torsten Reil 和 Niklas Köhler 联合创立公司。
Top 3:Shield AI
2015年成立于美国圣地亚哥,构建“AI飞行员”的国防科技初创公司。完成3亿美元的股权和债务融资,投资方为Hercules Capital。
Ryan Tseng,CEO。曾在Qualcomm担任技术主管,负责无线充电项目。他还是WiPower, Inc的创始人之一,担任CEO和CTO。该公司致力于开发先进的无线电能技术用于消费电子产品。WiPower后来被Qualcomm收购,并实现了高达700%的回报。获得麻省理工学院(Massachusetts Institute of Technology)MBA学位,获得佛罗里达大学(University of Florida)电气工程学士学位。Ryan Tseng和他的兄弟,前海豹突击队员Brandon共同创立公司,他们台湾出生的父亲是一名电气工程师和小企业主。
Top 4:Chaos Industries
2021年成立于美国洛杉矶,开发高性能的检测和通信工具,服务于国防和国家安全领域。完成1.45亿美元的B轮融资,投资方为Accel、8VC、Overmatch Ventures、Lerner Enterprises。累计融资2.15亿美元。
John Tenet,CHAOS Industries创始人兼执行主席,自2022年5月起担任该职务。此前,他是Epirus的联合创始人兼董事,自2018年7月起任职。在此之前,John于2017年至2020年10月在8VC担任高级顾问兼合伙人。此外,他自2020年9月起担任Zephyr AI的创始成员。John还曾在Valar Ventures LLC担任高级主管,从2015年6月至2017年10月;并在2011年6月至2015年6月间任职于Allen & Company,担任副职。John曾就读于乔治城大学。
Top 5:Red 6
2018年成立于美国佛罗里达奥兰多,开发用于国防和娱乐行业的增强现实应用,最近B轮融资筹集了7000万美元,投资方为RedBird Capital Partners、Alpha Edison、波音的AEI Horizon X基金、Accelerator Investments、Downey Labs以及之前的投资者Lockheed Ventures。该公司总共筹集了1.109亿美元。
Daniel Robinson,联合创始人/CEO。曾任Gus Robinson Developments公司的CEO和董事会主席,并在Franklin Templeton担任新业务发展总监。曾是美国空军F-22猛禽战斗机飞行员,也是首位驾驶F-22的非美国飞行员。还曾在英国皇家空军担任Tornado F3战斗机飞行员。曾就读于乔治城大学麦克唐纳商学院。
Top 6:Quantum Systems
2015年成立于德国慕尼黑,设计和制造用于航空测绘、监视和数据收集等任务的先进无人机。完成1117万美元的B轮融资,投资方为Notion Capital、Porsche SE。累计融资1亿欧元。早在 2022 年,该公司就得到了 Peter Thiel 的支持。
Florian Seibel,Quantum-Systems GmbH联合创始人兼CEO,UXS Alliance联合创始人。曾在Universität der Bundeswehr München担任研究员及博士候选人。曾在Bundeswehr(德国联邦国防军)担任飞行员,也曾在Airbus Helicopters担任NH90直升机的试飞工程师。毕业于德国联邦国防军大学,获得航空航天工程Diplom-Ingenieur学位,曾在Heeresfliegerwaffenschule(陆军飞行武器学校)接受军用直升机飞行员培训,并在U.S. Army Aviation Center, Fort Rucker完成基础旋翼机培训。
Top 7:Intenseye
2018年成立于美国纽约,通过自动警报和监控来预防事故确保工作场所安全。完成6400万美元B轮融资,投资方为Lightspeed Venture Partners以及之前的投资方Insight Partners、Point Nine和Air Street Capital。累计融资超过9000万美元。
Sercan Esen,联合创始人/CEO。曾任职索尼,先后担任人工智能工程师和高级软件工程师。曾就读博阿兹吉大学,获得管理信息系统学士学位,后攻读计算机科学硕士学位但中途创立Intenseye。
Top 8:Spot AI
2017年成立于美国旧金山,提供AI驱动的视频监控平台,帮助企业监测和分析其物理环境。完成3100万美元的融资,投资方包括Qualcomm Ventures、GSBackers、MVP Ventures、Cheyenne Ventures,以及之前的投资者Scale Venture Partners、StepStone Group、Redpoint Ventures和Bessemer Venture Partners。公司累计融资9300万美元。
Spot AI 还宣布推出视频 AI 代理,将代理 AI 功能从数字世界引入物理世界。它可以帮助组织立即发现并解决安全、安保和运营方面的事件,从而在制造、教育、零售和汽车服务领域提供可衡量的投资回报率。
Tanuj Thapliyal,Spot AI联合创始人兼执行主席。此前在多家创业公司工作,担任工程师和联合创始人,其中包括Meraki(负责WiFi、安全设备和交换机产品,期间公司被思科以12亿美元收购)和Mellow Research(从斯坦福计算机科学实验室分拆出来,帮助企业查找和解决应用中的能源问题)。就读于斯坦福大学,获得电气工程硕士和MBA学位;曾就读于UCLA,获得电气工程学士学位。
Top 9:Vannevar Labs
2018年成立于美国加州,提供先进技术以解决关键国家安全问题。完成7500万美元的B轮融资,投资方为Felicis、DFJ Growth、Aloft VC、General Catalyst、Point72 Ventures、Costanoa Ventures、Shield Capital。累计融资超过9000万美元。
Vannevar 的旗舰产品 Decrypt 帮助从事军事和外交政策决策的公务员以以前不可能的方式了解、瞄准和应对外国行为者。自 2021 年 1 月推出以来,Decrypt 已在政府 15 个最重要的机构中部署,销售额已达到2500 万美元。
Brett G.,Vannevar Labs联合创始人兼CEO。曾是Lilt的顾问,也曾在In-Q-Tel担任投资人,参与与CIA、NSA及国防部合作的计算机视觉和NLP技术实施工作。此外,他还曾在麦肯锡公司担任商业分析师,负责为技术、航空航天和国防及政府组织制定和实施战略及运营改进方案。他曾就读于斯坦福大学商学院攻读工商管理硕士学位,并于创业Vannevar Labs后中途退学。此外,他还获得了乔治亚大学数学与经济学的理学学士学位。
Top 10:RapidSOS
2019年成立于美国纽约,利用人工智能帮助应急响应团队。完成7500万美元的D轮融资,投资方为BlackRock,NightDragon、BAM Elevate、Insight Partners、Balyasny Asset Management、Manhattan Venture Partners、Acrew Capital和Harmonic Growth Partners。公司将超过 5.4 亿台联网设备(包括美国家庭、学校、火车、汽车和建筑物中的智能手机和小工具)的数据整合到超过 16,000 个公共安全机构和近百万急救人员中。其平台去年处理了超过 30 亿条数据,帮助运营团队和急救人员管理了 1.71 亿起紧急情况,覆盖了美国 99% 以上的人口。
Michael Martin,CEO。曾在Braemar Energy Ventures担任高级助理,该能源技术基金管理着6亿美元资产和40个投资组合公司,涉足能源行业的各个垂直领域。还曾共同创立MS Consulting,为能源、清洁技术、技术和消费品行业的初创和成长期企业提供融资、战略和业务发展咨询服务。曾在EcoMotors和General Fusion担任董事会观察员。曾就读于哈佛商学院,获得工商管理硕士(MBA)学位,并在卡尔顿学院获得国际关系学士学位(summa cum laude)。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。