论文信息
题目:Multi-modality 3D CNN Transformer for Assisting Clinical Decision in Intracerebral Hemorrhage
多模态3D CNN Transformer助力脑出血临床决策
源码:https://github.com/Henry-Xiong/3DCT-ICH
论文创新点
-
多模态预测模型的引入:作者提出了一种结合3D CNN与Transformer的多模态预测模型,该模型利用入院时的CT图像和临床数据有效预测ICH患者的治疗方式。
-
预训练CLIP模型的利用:通过使用预训练的CLIP模型,作者增强了多模态信息的集成,并深化了模型对专业医学知识的理解。此外,作者引入了一个基于CNN的MLP层,以改善全局空间特征的检测。
-
CLIP模块与CMLP的结合:作者展示了CLIP模块和CMLP在操作层面上的互补功能。当结合使用时,它们不仅优化了模态之间的融合过程,而且显著增强了空间特征的捕获,从而大幅提升了模型性能。
摘要
脑出血(ICH)是一种死亡率和发病率高的脑血管疾病。早期ICH患者往往缺乏明确的手术指征,这对于神经外科医生来说在做出治疗决策时非常具有挑战性。目前,ICH的早期治疗决策主要依赖于神经外科医生的临床经验。尽管已有尝试结合局部CT成像和临床数据进行决策,但这些方法未能提供深度语义分析,也没有充分利用不同模态之间的协同效应。为了解决这一问题,本文介绍了一种新颖的多模态预测模型,该模型结合了CT图像和临床数据,为ICH患者提供可靠的治疗决策。具体来说,该模型采用了3D CNN和Transformer的组合来分析患者的脑部CT扫描,有效地捕获了颅内血肿和周围脑组织的三维空间信息。此外,它利用对比语言-图像预训练(CLIP)模块提取人口统计特征和重要的临床数据,并通过交叉注意力机制与CT成像数据集成。此外,设计了一种基于CNN的多层感知器(MLP)层,以增强对三维空间特征的理解。在真实临床数据集上进行的广泛实验表明,与现有的最先进方法相比,所提出的方法显著提高了治疗决策的准确性。
关键词
ICH · 多模态 · CNN · Transformer · 临床决策
2 方法
2.1 多模态模型架构
我们的多模态模型架构如图1所示。具体来说,它使用2D和3D CNN处理3D CT扫描(尺寸为高度H ×宽度W ×深度D),以捕获平面和空间信息。改进的Transformer有效地集成了两种模态的数据以生成预测。以下各节将详细描述模型的组成部分。
2.2 特征提取
考虑到将3D医学成像数据分割成小的3D补丁并将其展平以供Transformer处理的高计算成本,我们使用2D和3D卷积有效地从CT图像中提取特征。考虑到CT图像在深度上与宽度和高度的不均匀性(512 × 512 × 128),我们首先应用3 × 3的2D卷积从每个轴向切片中提取特征,将CT图像尺寸转换为统一的128 × 128 × 128立方体,以进行后续处理。为了进一步细化特征,我们应用3 × 3 × 3的3D卷积构建残差连接块,通过四个下采样步骤将高维3D CT图像减少到具有丰富高级表示的特征图(16 × 16 × 16)。最后,我们调整这些特征图的大小并添加位置编码,形成最终的输入特征图,然后输入到后续模块中,以更深入地探索全局接受域。
2.3 CLIP模块
利用CLIP在文本特征理解方面的优越性,我们最初将数值和文本数据合并成描述患者状况的句子。CLIP的文本编码器,一个基于Transformer的模块,提取关键信息以进行深度语义表示。为了协调文本和图像数据维度的差异,上采样层调整文本特征大小以实现图像-文本模态对齐。特征融合采用交叉注意力机制:
其中代表从文本数据派生的查询向量,而和分别对应于由图像数据生成的键和值向量。表示键向量的维度,作为缩放因子。这种处理增强了CT和临床数据的集成,促进了更全面的分析。这不仅加深了对临床数据的理解,还模仿了临床诊断方法。
2.4 CMLP
在ViT中,通过注意力机制提取的特征通常依赖于MLP的处理。在此基础上,我们使用CNN重新设计了MLP层,以增强空间信息捕获。首先,我们将CLS标记从特征向量中分离出来。然后,我们执行剩余特征的向上投影,允许它们通过3 × 3的卷积层,然后通过1 × 1的卷积层。这些卷积层产生的特性通过向下投影恢复到原始尺寸。随后,这些特征通过平均池化转换为单个权重,乘以CLS标记。最后,这个处理过的CLS标记与CNN处理过的特征连接,旨在提高模型捕获相邻特征和增强空间信息感知和利用的能力。
3 实验
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。