引言目标检测是计算机视觉领域的核心任务之一,它不仅需要识别图像中的物体,还要确定这些物体的位置。随着深度学习技术的发展,目标检测领域取得了显著的进展,本文将深入探讨目标检测的基本概念、技术进展、应用案例,并提供代码示例。
一、目标检测的基本概念
(一)什么是目标检测目标检测(Object Detection)的任务是找出图像中所有感兴趣的目标,并确定这些目标的位置和类别。这与分类和回归问题不同,目标检测需要同时进行定位和分类。
(二)目标检测的任务在计算机视觉中,图像识别任务可以分为四大类:
• 分类(Classification):确定图像中包含的目标类别。
• 定位(Location):确定目标的位置。
• 检测(Detection):同时确定目标的位置和类别。
• 分割(Segmentation):精确地分割出图像中每个目标的像素。
(三)目标检测算法分类目标检测算法可以分为两大类:
• 传统目标检测算法:
• Viola Jones Detector
• HOG Detector
• DPM Detector
• 基于深度学习的目标检测算法:
• Two Stage:如R-CNN系列
• One Stage:如YOLO系列
• Anchor-Free:不使用锚点框的检测算法
二、目标检测原理
(一)候选区域的产生目标检测通常通过以下两种方式产生候选区域:
• 滑动窗口:在不同尺度的图像上滑动窗
08-09
1万+
