摘要: 以AI大模型为代表的人工智能技术正飞速发展,逐步构建起了全新智能化产业链,为航运业的发展带来了新方向。介绍AI大模型的基本内涵和发展趋势,分析AI大模型在航运业中的应用前景和挑战,进而提出针对性的应对策略,旨在提升航运业对AI大模型的认识,促进航运智能化和可持续发展。
关键词: 智能航运;人工智能;AI大模型
一、引言
近年来,人工智能 ( AI ) 技术在各行各业中的应用取得了显著进展,特别是2023年3月,OpenAI公司推出了划时代的GPT-4模型,标志着生成式人工智能技术实现了一个重大突破。2023年7月6日,由上海船舶研究设计院牵头编制的《智能船舶发展白皮书——远洋船舶篇》发布,其中提到,具备船舶、航运行业特征的ChatGPT将逐步承担包括专业知识查询、驾驶培训、瞭望提醒、船和船之间沟通等功能。2023年11月20日,招商轮船推出了业界首个航运大模型ShippingGPT,揭开了航运业AI大模型的序幕。AI大模型技术正在逐步构建起一个涵盖基础算力、模型开发及行业应用的全新智能化产业链。航运业据此可开发出丰富的应用场景,其具有巨大的创新潜力。因此,探索AI大模型在航运业中的应用前景,不仅对提升航运业的整体竞争力具有重要意义,也是推动航运业智能化发展的关键路径。
二、AI大模型概述
( 一 ) AI大模型的概念
AI大模型是利用海量的多源数据构建的预训练模型。其核心优势在于解决了数据标注的难题,通过学习大量的未标注数据进行预训练,极大地扩展了模型的学习范围和深度,从而提高了AI大模型的知识储备。这种做法使得AI大模型能够以低成本和高适应性的方式,在后续的各种特定任务中发挥作用。在实际应用中,预训练大模型先通过基于海量数据的自监督学习阶段,完成了广泛的知识积累,相当于接受了“通识教育”;然后通过“预训练+精调”的模式,在共享的参数基础上,根据特定应用场景的特点,只需使用少量的数据进行微调,就能以高水准完成各项任务。大模型“预训练+精调”模式如图1所示。
图1 大模型“预训练+精调”模式
( 二 ) AI大模型的层级
1.基础大模型 ( L0 )
基础大模型 ( L0 ) 是在大规模未标注数据上进行训练,需要巨量的算力、数据集和参数值。通过训练使得AI大模型能够发现数据中的特征和规律,具备强大的泛化能力,能够在无须或仅需少量微调的情况下,匹配各种不同的应用场景。L0通常由专业的大模型公司提供,L0构建后,AI大模型就完成了“通识教育”。
2.行业大模型 ( L1 )
行业大模型 ( L1 ) 是基于L0,结合行业特定的知识训练构建而成。其利用特定行业数据进行预训练,完成并构建行业知识库。L1一般由行业领先企业构建,目的是提高其性能和准确度,使得AI大模型成为“行业专家”。
3.垂直大模型 ( L2 )
垂直大模型 ( L2 ) 是面向更细分市场的高级推理模型,基于实际场景进行部署,一般是在L1基础上特制搭建的。模型会应用和场景紧密相关的数据进行预训练或微调,进而完成在具体项目上的任务,展现出更强的性能和效果。
( 三 ) AI大模型的发展趋势
1.参数量和建模能力的提升
AI大模型参数量正从亿级增长到百亿、千亿级别,并探索更大规模。例如,GPT-3拥有1 750亿参数,而知识增强大语言模型“文心一言”的参数规模则达到2 600亿。AI大模型在参数量上取得了质的飞跃,这使得它们在处理复杂任务时的建模能力得到了整体上的提升。这种提升不仅体现在学习能力的增强上,还体现在泛化能力和鲁棒性的加强上。
2.从决策式AI转向生成式AI
决策式AI主要通过分类和回归分析数据,广泛应用于图像识别、推荐系统和决策智能体等领域。而生成式AI借助Transformer架构等,具备强大的全局表征能力、高度并行性、通用性和可扩展性,主要服务于内容创作、科研、人机交互等领域,实现了从简单感知到内容创造的飞跃。
3.垂直领域应用场景广泛
多模态大模型能够处理多种不同类型数据,这些数据类型包括但不限于文本、图像、音频、视频等。模型能够理解和处理多种模态的信息,实现不同模态之间的信息融合和协同处理。AI大模型将在各个垂直领域中发挥更大的作用,应用于更多具体的行业和场景中,提供定制化的解决方案[1]。
三、AI大模型在航运业应用的前景
( 一 ) 船舶设计与建造
( 1 ) AI大模型可根据船舶结构、动力系统、载重分布等历史已有数据进行结构性能分析和方案设计,进而优化提升设计效率和质量。
( 2 ) 通过分析建造材料的需求,预测和分析市场供需关系及价格变化趋势,供企业优化资源配置,合理安排生产进度,缩短生产周期和降低建造成本。
( 3 ) 系统分析船舶性能参数数据,实时查找分析可能存在的质量问题和缺陷,及时采取相应的措施以保证质量。
( 4 ) 协助质检人员进行故障分析和诊断,提升检验效率和准确度。
( 二 ) 智能决策和效率提升
航运业相关人员需要根据气象信息、航线规划、货物配载、船队管理等大量数据信息进行决策,会消耗大量的人力物力。AI大模型可以自动采集分析相关信息数据并输出结果供企业参考,从而帮助企业更好地应对市场的变化,实时预测市场未来趋势,及时作出正确决策,提升运营效率。同时,员工与AI之间可实现高效的分工与协作,AI处理海量信息,同时人在关键节点做出决策和处置,共同完成企业价值创造的全过程。
( 三 ) 货物追踪与管理
AI大模型通过分析GPS、RFID和气象等数据信息,使得利益相关方可以实时访问货物的状态和位置信息,提高整个供应链的透明度、信任度和合作效率。如达飞航运推出了一款名为CMA CGM Connect的移动应用程序,客户可以实时追踪货物信息。
( 1 ) 实时监控供应链各环节,根据货物供需情况、船舶实时位置及状态、港口拥堵情况等因素,预测货物到达时间,调度船舶和货物,减少等待时间,提升运输效率。
( 2 ) 自动识别和处理各种货运文档,如提单、发票、报关单等,与物流供应商实时协同处理货物通关手续和流程,并通过聊天机器人等方式,为客户提供24/7的在线支持,解答客户疑问,增强客户满意度。
( 3 ) 分析历史天气数据、航线风险记录、自然天气状况和政治动荡等因素,帮助船东和货主提前制订航线调整计划和货物管理方案,以降低损失。
( 4 ) 通过分析船舶和港口的视频监控数据,实时检测异常行为和潜在安全隐患,及时采取措施,确保货物运输的安全。
( 四 ) 航行规划与优化
船舶在航行过程中,AI大模型可通过实时分析船舶航行信息和气象信息、航线航道等外部环境因素,为船舶规划航线,使船舶能够进行自动导航和避障航行,确保航行安全和提升航行效率。同时其还可以根据船舶运行特性及内外部影响因素,提供航行操控建议,合理规划航行速度,进而节省燃料消耗,减少温室气体排放。
( 五 ) 故障诊断和维护
( 1 ) AI大模型可利用船舶传感器实时监测船舶设备的运行参数的变化情况,经过预训练和调教分析,预测设备性能变化趋势和故障征兆,提醒船舶管理人员采取措施进行设备检修和维护,避免设备发生故障。
( 2 ) 根据设备厂商说明书、过往事故数据和设备现有状况生成设备维修保养计划建议,供船员参考。
( 3 ) 帮助分析确定设备故障原因及故障解决的方法,提升船员的技术能力、维修质量和工作效率。
( 六 ) 船舶安全管理
( 1 ) AI大模型可以通过分析和评估气象条件、航道特点、船舶性能等船舶航行中的各种因素,得出可能出现安全风险的种类、因素、概率及相应的应对措施,并发出预警警报,提醒船员提早采取安全措施,降低事故发生的概率和影响。
( 2 ) 当船舶发生安全事故时,AI大模型可以针对性地提出相应的应急建议,以供船员参考,并进行实时指导。
( 3 ) 航运企业可以通过AI大模型检验和分析公司安全体系运用的作用和效果,发现体系运行中存在的薄弱环节和盲点,以便企业针对性地对安全体系进行改进,达到安全闭环管理的目的。
( 七 ) 员工培训培养
( 1 ) 航运企业可利用AI大模型搭建行业企业知识库,将企业的经验和知识进行结构化整理,构建船舶操作、航线知识、海事法规等领域的知识库,员工可以随时查询学习,提高知识储备。
( 2 ) AI大模型可以模拟不同的航运场景,让员工在模拟中学习如何做出决策并给予反馈,帮助员工提高决策质量;模拟船舶驾驶和各种操作情况,创造模拟的安全事故情境,让员工在虚拟环境中进行模拟操作,培养员工的安全意识和应对紧急事故情况的能力。
( 3 ) AI大模型能够帮助船员学习如何分析航海数据并生成报告,进而提高数据处理能力,使船员学习船舶的维护和修理技巧,通过模拟不同的故障情况,让员工学习如何诊断和解决问题。
四、AI大模型在航运业应用的挑战
( 一 ) 数据隐私和安全问题
船舶航线、货物配载、客户信息和船员私人信息等都是航运大模型需要收集、整理和分析的数据信息。数据在存储、传输和处理过程中可能会遇到网络攻击、数据篡改、数据丢失等问题,导致信息的泄露和扩散,进而可能造成系统不能正常运转,给企业和个人带来不利影响[2]。
( 二 ) 模型准确性与可靠性问题
AI大模型是“大数据+大算力+强算法”融合的成果,包含了复杂的算法和各种类型的数据信息。很多企业采用的大数据模型是黑箱模式,系统的组织架构和数据处理的过程是不透明的,模型的准确性不可控并可能存在一定的偏离,导致结果输出有一定的不确定性和不可解释。同时,智能设备的软硬件系统如果存在故障宕机,也会影响到模型输出的准确。航运业的营运成本高,需要的安全冗余系数大,对AI大模型提出了更高的安全可靠性要求。
( 三 ) 技术标准与兼容性问题
船舶现有设备和管理系统存在不同种类的技术标准、接口协议和认证标准,为提升数据质量就必须统一技术标准,录入标准数据类型,以便模型能够得出更加准确和适用的结果。更换船舶原有系统的成本较高,若新设备系统不能兼容原有设备系统的数据信息,就会提高AI大模型推广应用成本,影响系统的整体性能和兼容性。
( 四 ) 法律政策不完善
目前,AI大模型的应用正处于快速发展期,相关的法律法规尚不完善。截至2023年11月,北京、上海、广东、安徽等地均已发布与AI大模型相关的政策,从计算能力支持、应用场景开放、技术突破、产品生态等多个方面推动AI大模型的应用实施。2023年5月,我国发布了《生成式人工智能服务管理暂行办法》,以促进生成式人工智能健康发展和规范应用。但是AI大模型仍存在着数据治理规则、知识产权保护和信息内容治理规则不完善等大量问题尚待解决。航运业是一个高度监管的行业,涉及许多国家和地区的法律法规。在航运业应用AI大模型时,需要确保其符合船舶登记、船舶设备、船舶操作规定等相关航运法规要求。
( 五 ) 缺乏专业人才与相应培养机制
目前,AI技术进入了发展的快车道,但航运业对相关专业人员的培养相对滞后,缺乏具备相关技能的人才。新型船舶管理需要多学科、多技能的复合型专业人才,既要能够胜任传统船舶相关岗位,还要掌握AI大模型相关知识。目前还没有系统的培养机制体制和成熟的经验可以参考学习。
五、对策建议
( 一 ) 强化数据安全管理
( 1 ) 航运企业应严格遵守国际国内有关数据隐私和安全防护的法律法规,确保数据应用和处理过程合规。
( 2 ) 完善企业系统安保机制,严格管理数据的存储和访问权限,充分防止敏感及隐私信息外泄。
( 3 ) 构建数据治理的标准框架,采用加密技术、设置访问权限、定期备份数据等增强数据安全防护的措施,确保数据在传输和存储过程中的安全。
( 4 ) 加强与AI技术供应商的合作,共同制定并签署相关保密措施和协议,有效防范数据泄露。
( 5 ) 定期进行安全检查与评估,及时解决数据安全管理相关问题。
( 二 ) 提升模型的透明性和可靠性
( 1 ) 加强AI大模型解读和演示,使船舶管理人员能够了解其工作原理和推算依据,通过可视化设备、工具来解释模型的决策过程,进而提升模型的透明性。
( 2 ) 通过定期检查和维护设备、规范数据收集和处理流程等措施,确保数据的准确性和完整性。
( 3 ) 通过调整模型结构、优化算法、超参数调整等方法来优化模型训练,提高模型的性能和可靠性。
( 三 ) 推动技术标准化与模块化
( 1 ) IMO、政府机关、行业组织协会和企业等共同制定AI大模型的技术标准规范,包括模型架构、数据格式、接口定义等方面,提高模型的可复用性和可扩展性。
( 2 ) 航运企业建立产业合作机制和联盟,形成技术标准化和模块化的产业生态。
( 3 ) 航运企业和专业大模型公司共同建立AI大模型的开源模型库和框架,提供通用的模型构建、训练和部署工具,建立标准化的数据集,提高模型的泛化能力和模块化设计,提高系统的灵活性和可扩展性[3]。
( 四 ) 完善相关法规与政策支持
( 1 ) 针对航运业的特点和需求,政府和监管机构制定专门的法规,明确AI技术在航运业应用的范围、限制和要求,保障航运安全和效率。
( 2 ) 相关主体应对现有航运法规进行修订和完善,包括航运业务、船舶设备、船员培训等方面内容,以便适应AI技术的发展和应用。
( 3 ) 政府应提供政策支持,鼓励航运企业采用AI技术,提高航运业的整体竞争力,包括提供财政补贴、税收优惠、信贷支持等措施;同时建立一套针对AI技术在航运业应用的评估体系,对AI技术的实际效果进行评估和监测。
( 五 ) 构建人才培养与引进体系
( 1 ) 航运企业可以为员工提供明确的职业发展通道,对员工进行AI技术相关的培训,提高现有员工的技术水平,激励他们在AI技术领域不断成长和进步。
( 2 ) 航运企业可与高校等教育主体合作,推进产教融合,实现人才培养与企业需求的无缝对接。
( 3 ) 企业可以参与课程设计并设置培训项目,为学员提供实习和就业机会,帮助学员更好地适应航运业的实际需求。
六、结语
AI大模型作为一种先进的人工智能技术,具有巨大的潜力和前景。在航运业中,AI大模型可以被应用于智能船舶制造、船舶安全管理、航线优化等方面,提高航运业的效率和安全。未来,随着AI技术的不断进步和应用的深入,AI大模型将在航运业中发挥更大的作用,推动航运业的智能化和可持续发展。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
-END-
👉AI大模型学习路线汇总👈
大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉大模型实战案例👈
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
👉大模型视频和PDF合集👈
观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费
】🆓