学习LangChain这一本就够了!LangChain项目贡献者@莫尔索新作重磅上市

在 AI 领域,每天都有新技术和框架出现,作为一个开源框架,LangChain 提供了构建基于大模型的 AI 应用所需的模块和工具,大大降低了 AI 应用开发的门槛,使得任何人都可以基于 GPT-4 等大模型构建自己的创意应用。

LangChain 框架的爆火

LangChain 作为开源项目首次进入公众视野是在 2022 年 10 月,这个项目很快在 GitHub 上获得大量关注(如图1),进而转变成一家迅速崛起的初创企业,LangChain 作者 Harrison Chase 也自然成为这家初创企业的 CEO。

尽管 LangChain 在早期没有产生收入,也没有明确的商业化计划,却在短时间内获得 1000 万美元的种子轮融资,紧接着又获得 2000万美元~ 2500万美元的 A 轮融资,估值约为 2 亿美元,LangChain 的快速崛起和获得的资本支持,表明了 AI 领域对于创新工具和平台的迫切需求,以及对于能够推动 AI 技术应用和开发的工具的高度认可。

图1:LangChain在GitHub上的Star数变化趋势

LangChain 的特性

LangChain 作为一种大模型应用开发框架,针对当前 AI 应用开发中的一些关键挑战提供了有效的解决方案,概述如下。

  • 数据时效性:GPT-3.5 等模型的训练数据截止于 2021 年 9 月,LangChain 可以通过集成外部知识库和向量数据库,允许开发者将最新的数据和信息注入模型中,从而提高应用的时效性。

  • token 数量限制:LangChain通过优化提示词和链的管理,帮助开发者突破模型 token 数量限制,例如通过分块处理长文档,或者使用特定的提示模板来引导模型生成更有效的输出。

  • 网络连接限制:尽管 GPT-3.5 本身无法联网查询,但 LangChain 可以作为中间件,帮助开发者将模型与实时数据源连接起来,例如通过 API 调用获取最新的信息,然后将这些信息作为输入传递给模型。

  • 数据源整合限制:LangChain 支持与多种数据源的整合,包括私有数据库、API 和其他第三方工具,这使得开发者能够构建更加灵活和多样化的应用,充分利用不同数据源的优势。

LangChain 的这些特性不仅提高了开发者的工作效率,还促进了产品的快速迭代和创新。通过降低基础架构搭建的复杂性,LangChain 让开发者能够专注于核心业务逻辑和用户体验的优化。此外,LangChain 的多语言支持和社区贡献,进一步证明了其作为一个开源代码项目的活力和包容性,吸引了更广泛的开发者参与和贡献。

与其他框架的比较

既然 LangChain 的能力这么强,那是不是会有其他相似的框架来和它争抢开发者呢?答案显然是肯定的。在目前的业界共识中,基于大模型的业务主要分为三个层次。

  • 基础设施层:这一层次专注于构建和提供大模型的底层架构。这通常包括大规模的数据处理和存储能力、用于模型训练的计算资源,以及提供模型即服务(MaaS)的API,目标是提供稳定、可扩展且性能优越的语言模型服务。

  • 垂直领域层:在基础设施层之上,垂直领域层使用领域特定数据对模型进行微调,使其在特定垂直市场或行业(如医疗、法律、金融等)中的表现更精确和有效。微调可以帮助模型更好地理解和生成与特定领域相关的语言和概念。

  • 应用层:在此层次中,开发者和公司构建具体的面向用户的产品和服务。这些应用将大模型的能力转化为用户可以直接与之交互的工具和平台,比如聊天机器人、内容生成工具、自动编程助手等。应用层的重点在于用户体验和接口设计,使非技术用户也能轻松利用大模型的能力。

LangChain 等工具旨在简化这些层次的集成,帮助开发者快速开发和部署基于大模型的应用。它们提供了预建组件、模板和接口,以加速从概念验证到生产部署的过程。这种框架的实用性在于减少开发时间和降低技术门槛,因此市场上的竞争日益激烈。

通过 GitHub 上的贡献者数量、引用数以及 Star 数(如图3)这三项数据,以及编程语言兼容性,对 4 种框架进行了简单比较。

  • LangChain 显然是这一组中社区最活跃的框架,拥有最多的贡献者和较高的引用数。它的 Star 数也相当高,这表明它在开发者中广受欢迎并具有较高的认可度。

  • SK 贡献者数量相对较少,是一个新兴框架,相对较少的 Star 数意味着它的社区影响力和知名度不如 LangChain,没有获取到引用数信息,但是在编程语言支持方面比较优秀,可以覆盖更多的开发者群体。

  • LlamaIndex 虽然在贡献者数量上不及 LangChain,但社区活跃度很高,并且可以直接作为 LangChain 的检索模块使用,是开源社区中最有影响力的检索增强生成引擎。

  • AutoGPT 在 Star 数方面远超其他框架,这个项目在验证大模型驱动的智能代理概念方面引起了极大的关注,其独特的功能和应用前景吸引了大量有兴趣的潜在开发者。

表1:LangChain、SK、LlamaIndex 和 AutoGPT 相关数据比较

在这里插入图片描述

图3:LangChain、SK、LlamaIndex 和 AutoGPT 在GitHub上的Star数变化

如何快速上手LangChain

如此强大的 LangChain,如何掌握核心知识点,并且快速上手学习。不得不提这本《LangChain编程:从入门到实践》,它可以全方位地帮助你。

《LangChain编程:从入门到实践》

李多多(@莫尔索)| 著

作者手把手教你利用 LangChain 简化大模型应用开发,全书共分为 10 个章节,包括以下核心内容:

  • 深入解析 LangChain 六大组件:模型输入/输出、检索、链、记忆、代理与回调,全方位掌握核心功能。

  • 实战案例:从 0 到 1 构建多模态智能机器人,理论结合实践,轻松开启大模型应用之旅。

  • 配套丰富:随书附赠详尽示例代码,快速上手,轻松驾驭大模型技术。

  • 轻松入门:讲解细致入微,学习路径清晰明了,与时俱进,助你成为大模型应用开发达人。

不管你是新手还是在使用 LangChain 的过程中遇到过困难,这本书都能给你帮助。

如何学习大模型 AGI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

-END-


👉AGI大模型学习路线汇总👈

大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

👉AGI大模型实战案例👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

在这里插入图片描述

👉AGI大模型视频和PDF合集👈

观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
在这里插入图片描述
在这里插入图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

👉获取方式:

😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值