Agent(智能体) 是当今 LLM(大模型)应用的热门话题[1],通过任务分解(task planning)、工具调用(tool using)和多智能体协作(multi-agent cooperation)等途径,LLM Agent 有望突破传统语言模型能力界限,体现出更强的智能水平。在这之中,调用外部工具解决问题成为 LLM Agent 必不可缺的一项技能,模型根据用户问题从工具列表中选择恰当的工具,同时生成工具调用参数,综合工具返回结果和上下文信息总结出答案。通过调用外部工具,LLM 能够获取到实时、准确的知识,大大降低了生成中的幻觉(hallucination)现象,使 LLM 的任务解决能力得到长足的提升。工具调用能力的获得离不开模型微调,尽管使用 ReAct 提示[2]或其他预训练模型也能实现类似效果,但对于定制化或更加广泛的工具,对模型做进一步微调能有效地提升工具使用能力。本文将会带领大家使用 LLaMA Factory 的 Agent Tuning 功能,使用单张 GPU 在 3 小时内训练出自己专属的 LLM Agent。
code:https://github.com/hiyouga/LLaMA-Factory
1、训练框架
之前文章[3]已经讲到,LLaMA Factory 是一个涵盖预训练、指令微调到 RLHF 阶段的开源全栈大模型微调框架,具备高效、易用、可扩展的优点,配备有零代码可视化的一站式网页微调界面 LLaMA Board。经过半年多的升级迭代,LLaMA Board 网页微调界面在原先的基础上,丰富了多种新的功能,包括:
- 支持约 120 种模型以及约 50 种数据集,包括最新的 DeepSeek MoE 混合专家模型
- 使用 Flash Attention2 和算子优化技术,实现约 200% 的 LoRA 训练速度,大幅超越同类框架
- 集成魔搭社区(ModelScope)下载渠道,国内用户可享受 100% 带宽的模型和数据下载
- 同时包含预训练、监督微调、RLHF、DPO 四种训练方法,支持 0-1 复现 ChatGPT 训练流程
- 丰富的中英文参数提示,实时的状态监控和简洁的模型断点管理,支持网页重连和刷新
2、模型与数据
本次我们选用零一万物[4]发布的 Yi-6B 开源双语基座模型,该模型于 2023 年 11 月发布,拥有约 60 亿参数,通过在 3T 多语言语料上的预训练,取得了同等规模下优异的中英文 Benchmark 效果,且允许免费商用。由于 Yi-6B 是一个预训练基座模型,并不具备对话能力,因此我们选用多个开源数据集对模型做指令监督微调(SFT)。在这些数据集中最关键的是工具调用数据集,该数据集包含约十万条由 Glaive AI[5]生成的关于工具调用的对话样本,我们将数据集处理为多角色的多轮对话样本,包含用户(human)、模型(gpt)、工具调用(function_call)和工具返回结果(observation)四种不同角色,同时还有一个工具列表(tools)字段,以 OpenAI 的格式[6]定义了可选工具。下面是数据集中的一个样本示例:
{
"conversations": [
{
"from": "human",
"value": "I saw a dress that I liked. It was originally priced at $200 but it's on sale for 20% off. Can you tell me how much it will cost after the discount?"
},
{
"from": "function_call",
"value": "{\"name\": \"calculate_discount\", \"arguments\": {\"original_price\": 200, \"discount_percentage\": 20}}"
},
{
"from": "observation",
"value": "{\"discounted_price\": 160}"
},
{
"from": "gpt",
"value": "The dress will cost you $160 after the 20% discount."
}
],
"tools": "[{\"name\": \"calculate_discount\", \"description\": \"Calculate the discounted price\", \"parameters\": {\"type\": \"object\", \"properties\": {\"original_price\": {\"type\": \"number\", \"description\": \"The original price of the item\"}, \"discount_percentage\": {\"type\": \"number\", \"description\": \"The percentage of discount\"}}, \"required\": [\"original_price\", \"discount_percentage\"]}}]"
}
如果读者想要加入自定义工具,只需要按照上述格式组织数据集即可。除此之外,我们也在本次训练中加入 Alpaca-GPT-4 数据集[7]和 Open-Assistant 数据集[8]以提升模型的通用对话能力。
3、环境准备
文章默认读者有至少不弱于 RTX 3090 24GB 的显卡和足够的系统内存,且安装了 CUDA 11.1-12.3 任一版本,关于 CUDA 环境的配置此处不予赘述。
我们已经将所有的程序打包,您可以选择自己的 Anaconda 环境,运行以下命令安装 LLaMA Factory。
pip install llmtuner==0.5.1
接着从 GitHub 下载数据集文件,这里以 Linux 命令行方法为示例,您也可以选择从 GitHub 网页下载,下载后切换到新的文件目录,运行 ls 命令应当显示同一级目录中存在 data 文件夹。
git clone https://github.com/hiyouga/LLaMA-Factory.git
cd LLaMA-Factory
ls # data src tests ...
由于 LLaMA Board 网页微调界面仅支持单卡训练,需要设置环境变量指定使用的显卡序号。此外可以选择模型下载源,这里推荐国内用户使用魔搭社区下载渠道。
export CUDA_VISIBLE_DEVICES=0 # 使用第一块 GPU
export USE_MODELSCOPE_HUB=1 # 使用魔搭社区下载渠道
如果您使用的是 Windows 系统,同样需要配置相关环境变量。
set CUDA_VISIBLE_DEVICES=0
set USE_MODELSCOPE_HUB=1
然后使用下述命令启动 LLaMA Board 网页微调界面。
unset http_proxy https_proxy all_proxy # 关闭代理
python -m llmtuner.webui.interface
4、 训练流程
- 打开浏览器,在地址栏输入 localhost:7860 进入 LLaMA Board,可以看到以下界面,点击左上角的 lang 选项中将界面语言切换为中文。
- 点击模型名称,选择 Yi-6B 模型,此时模型路径默认会显示远程模型地址,如果您已经将模型文件全部下载至本地,可以手动将其修改为本地文件夹路径。
- 如果您已经安装过 Flash Attention-2 或 Unsloth,可以点击高级设置-加速方式提升训练速度,其中 Flash Attention-2[9]可提升至 120% 左右的速度,Unsloth[10]可提升至 170% 左右的速度。此处我们略过安装过程,请各位读者自行查阅参考文献中的 GitHub 仓库安装,如果两者均未安装,请保持加速方式为 None。
- 点击数据集,选择我们此次要使用的四个数据集 glaive_toolcall、alpaca_gpt4_en、alpaca_gpt4_zh 和 oaast_sft_zh,如果数据集下拉框为空白,请检查数据路径是否正确。选择后点击预览数据集按钮可预览数据集。
- 训练参数中与显存占用有紧密关联的是截断长度和批处理大小选项,我们暂时保持默认。这里仅将训练轮数设置为 2.0,最大样本数设置为 8000,LoRA 参数设置-LoRA 作用模块设置为 all。
- 将页面翻到底部,将输出目录设置为 yi-agent-6b,训练后的模型文件会保存在 saves/Yi-6B/lora/yi-agent-6b 中。点击预览命令按钮可以看到当前配置对应的命令行脚本,如果您想使用多卡训练,可以参考下述命令来编写多卡训练脚本。
- 点击开始按钮启动模型训练,训练日志和损失变化图会实时展现在页面中,此时可以自由关闭或刷新网页,在本文的测试环境(A100 40GB * 1)下,约 3 小时即可完成模型训练。
- 训练结束后,我们切换到 Chat 栏,点击刷新适配器按钮,将适配器路径切换至 yi-agent-6b,点击加载模型按钮载入刚刚训练好的模型。
如果模型可以正常加载,那么恭喜你!仅花费一部电影的时间,就成功训练出了自己专属的 LLM Agent。
5、效果展示
- 基本对话
- 工具调用 - 查询天气
Yi-Agent-6B(本文微调的模型):正确理解工具返回结果并得出答案。
- Yi-6B-Chat(零一万物发布的指令模型):无法理解工具返回结果。
- 工具调用 - 计算 GPA
Yi-Agent 6B(本文微调的模型):正确生成工具调用并得到答案。
Yi-6B-Chat(零一万物发布的指令模型):无法生成工具调用。
从上述几个例子中可以看出,经过微调后的 Yi-6B 模型成功具备了选择工具-调用工具-总结答案的出色能力,在 Agent 方面的性能显著超越原始 Yi-6B-Chat 模型。由于网页界面功能有限,我们这里手动输入了工具调用结果,在下面的章节,我们将会展示如何使用 LLaMA Factory 将 LLM Agent 部署到实际生产环境中。
6、模型部署
- 切换到 Export 栏,选择最大分块大小为 2GB,填写导出目录为 models/yi-agent-6b,点击开始导出按钮,将 LoRA 权重合并到模型中,同时保存完整模型文件,保存后的模型可以通过 transformers 等直接加载。
- 在终端输入以下命令启动 API 服务。
python -m llmtuner.api.app --model_name_or_path models/yi-agent-6b --template default
该命令会在本地启动一个和 OpenAI 格式相同的 RESTFul API,这时我们可以直接用本地模型来替代 GPT-3.5 的函数调用功能!下面是一个使用 openai-python [3] 库来调用本地模型,实现 LLM Agent 功能的示例代码。
import os
import json
from openai import OpenAI
from typing import Sequence
os.environ["OPENAI_BASE_URL"] = "http://192.168.0.1:8000/v1" # 替换为本地主机 IP
os.environ["OPENAI_API_KEY"] = "0"
def calculate_gpa(grades: Sequence[str], hours: Sequence[int]) -> float:
grade_to_score = {"A": 4, "B": 3, "C": 2}
total_score, total_hour = 0, 0
for grade, hour in zip(grades, hours):
total_score += grade_to_score[grade] * hour
total_hour += hour
return total_score / total_hour
tool_map = {
"calculate_gpa": calculate_gpa
}
if __name__ == "__main__":
client = OpenAI()
tools = [
{
"type": "function",
"function": {
"name": "calculate_gpa",
"description": "根据课程成绩和学时计算 GPA",
"parameters": {
"type": "object",
"properties": {
"grades": {"type": "array", "items": {"type": "string"}, "description": "课程成绩"},
"hours": {"type": "array", "items": {"type": "integer"}, "description": "课程学时"},
},
"required": ["grades", "hours"],
},
},
}
]
messages = []
messages.append({"role": "user", "content": "我的成绩是 A, A, B, C,学时是 3, 4, 3, 2"})
result = client.chat.completions.create(messages=messages, model="yi-agent-6b", tools=tools)
tool_call = result.choices[0].message.tool_calls[0].function
name, arguments = tool_call.name, json.loads(tool_call.arguments)
messages.append({"role": "function", "content": json.dumps({"name": name, "argument": arguments}, ensure_ascii=False)})
tool_result = tool_map[name](**arguments)
messages.append({"role": "tool", "content": json.dumps({"gpa": tool_result}, ensure_ascii=False)})
result = client.chat.completions.create(messages=messages, model="yi-agent-6b", tools=tools)
print(result.choices[0].message.content)
# 根据你的成绩和学时,你的平均绩点 (GPA) 为 3.4166666666666665。
写在最后
LLaMA Factory 在今后还将不断升级,欢迎大家关注我们的 GitHub 项目。同时,我们也将本文的模型上传到了 Hugging Face,如果您有资源,一定要亲自动手训练一个大模型 Agent!
那么,如何系统的去学习大模型LLM?
作为一名从业五年的资深大模型算法工程师,我经常会收到一些评论和私信,我是小白,学习大模型该从哪里入手呢?我自学没有方向怎么办?这个地方我不会啊。如果你也有类似的经历,一定要继续看下去!这些问题啊,也不是三言两语啊就能讲明白的。
所以我综合了大模型的所有知识点,给大家带来一套全网最全最细的大模型零基础教程。在做这套教程之前呢,我就曾放空大脑,以一个大模型小白的角度去重新解析它,采用基础知识和实战项目相结合的教学方式,历时3个月,终于完成了这样的课程,让你真正体会到什么是每一秒都在疯狂输出知识点。
由于篇幅有限,⚡️ 朋友们如果有需要全套 《2025全新制作的大模型全套资料》,扫码获取~
👉大模型学习指南+路线汇总👈
我们这套大模型资料呢,会从基础篇、进阶篇和项目实战篇等三大方面来讲解。
👉①.基础篇👈
基础篇里面包括了Python快速入门、AI开发环境搭建及提示词工程,带你学习大模型核心原理、prompt使用技巧、Transformer架构和预训练、SFT、RLHF等一些基础概念,用最易懂的方式带你入门大模型。
👉②.进阶篇👈
接下来是进阶篇,你将掌握RAG、Agent、Langchain、大模型微调和私有化部署,学习如何构建外挂知识库并和自己的企业相结合,学习如何使用langchain框架提高开发效率和代码质量、学习如何选择合适的基座模型并进行数据集的收集预处理以及具体的模型微调等等。
👉③.实战篇👈
实战篇会手把手带着大家练习企业级的落地项目(已脱敏),比如RAG医疗问答系统、Agent智能电商客服系统、数字人项目实战、教育行业智能助教等等,从而帮助大家更好的应对大模型时代的挑战。
👉④.福利篇👈
最后呢,会给大家一个小福利,课程视频中的所有素材,有搭建AI开发环境资料包,还有学习计划表,几十上百G素材、电子书和课件等等,只要你能想到的素材,我这里几乎都有。我已经全部上传到CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
相信我,这套大模型系统教程将会是全网最齐全 最易懂的小白专用课!!