CVPR |2021 Anomaly Detection in Video Sequences: A Benchmark and Computational Model阅读笔记

该文介绍了新的大规模异常检测数据集LAD,包含2000个视频和14种异常类别,提供帧级和视频级标注。同时,提出了一种结合I3D和ConvLSTM的多任务深度学习模型,用于学习局部和全局时空特征,以提升异常检测性能。该模型旨在解决现有数据集规模限制和标注不足的问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

论文地址:https://arxiv.org/abs/2106.08570
代码地址:https://github.com/wanboyang/anomaly_detection_LAD2000

1.研究背景

现存的异常检测数据集主要有两个问题:
(1)规模有限
(2)训练集只包含指示整个视频中存在异常事件的视频级别的标签,但是缺少精确的持续时间的注释。

异常检测能够自动预测给出视频序列中的异常事件,其目标是高效的预测出异常和正常时间并判断出视频中异常事件的种类,一个很少发生的或者发生概率很低的事件被认为是异常事件,由于未知事件的类型和缺乏明确的定义,导致很难建立起有效的异常检测模型,传统的异常检测主要有两种方法:
(1)采用重建的方法,他们关注点在于对视频序列中的正常模式建模,其目标是学习一个对于正常模式的特征表示模型,在开始时,他们利用正常事件和异常例子的差别去确定最终异常分数和测试数据,如重建损失和特定的阈值,这种方法的关键是他们严重依赖于训练数据。
(2)将异常检测看作一个分类问题,视频序列的异常分数取决于通过训练的分类器提取的特征如光流直方图(HOF) ,或者动态纹理(DT),这种方法高度依赖于训练数据,并且提取出有效的区分

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值