CVPR 2021 | 又好又快的视频异常检测,引入元学习的动态原型学习组件

该博客介绍了CVPR 2021会议上的一项研究,提出了一种名为Meta Prototype Network (MPN) 的动态原型学习框架,用于视频异常检测。MPN通过学习视频中的正常模式并实时更新原型,以增强正常帧的预测和抑制异常帧的预测,从而解决了深度模型过度泛化的问题。论文和开源代码链接已提供。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Learning Normal Dynamics in Videos with Meta Prototype Network

作者:Hui lv, Chen Chen, Zhen Cui, Chunyan Xu, Yong Li, Jian Yang

单位:南京理工大学;北卡夏洛特分校

论文:https://arxiv.org/abs/2104.06689

代码:https://github.com/ktr-hubrt/MPN

摘要:

该工作提出了一个场景模式自适应的动态原型(prototype)学习框架,实时的学习视频中的正常模式,来辅助视频帧的预测,然后通过视频帧的预测误差和原型与输入特征的距离来检测异常。算法在多个无监督异常检测的数据集上均达到了SOTA  performance。

1. 简介

近来,基于自编码器的视频帧重建(或未来帧预测)方法成为视频异常检测的一个潮流算法。这些仅仅使用包含正常模式的数据训练的模型,在遇到没有见过的异常模式的数据时,往往会产生比较大的重构误差。


但是由于深度神经网络极强的泛化能力,深度模型对一些异常的视频帧也会重建(或预测)的较好,这就导致“过度泛化”问题。


在这份工作中,我们设计了一个动态原型学习的组件,来动态实时地建模和压缩视频中的正常模式为原型(prototype)ÿ

评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值