Learning Normal Dynamics in Videos with Meta Prototype Network
作者:Hui lv, Chen Chen, Zhen Cui, Chunyan Xu, Yong Li, Jian Yang
单位:南京理工大学;北卡夏洛特分校
论文:https://arxiv.org/abs/2104.06689
代码:https://github.com/ktr-hubrt/MPN
摘要:
该工作提出了一个场景模式自适应的动态原型(prototype)学习框架,实时的学习视频中的正常模式,来辅助视频帧的预测,然后通过视频帧的预测误差和原型与输入特征的距离来检测异常。算法在多个无监督异常检测的数据集上均达到了SOTA performance。
1. 简介
近来,基于自编码器的视频帧重建(或未来帧预测)方法成为视频异常检测的一个潮流算法。这些仅仅使用包含正常模式的数据训练的模型,在遇到没有见过的异常模式的数据时,往往会产生比较大的重构误差。
但是由于深度神经网络极强的泛化能力,深度模型对一些异常的视频帧也会重建(或预测)的较好,这就导致“过度泛化”问题。
在这份工作中,我们设计了一个动态原型学习的组件,来动态实时地建模和压缩视频中的正常模式为原型(prototype)ÿ