一个程序的运行时间(执行每条语句的耗时和频率):
①确定输入模型,定义问题的规模;
②识别内循环;
③根据内循环的操作确定成本模型;
④对于给定的输入,判断这些操作的执行频率;
举个例子:
数组实现的二分查找:输入模式是a[N],内循环是while循环中的所有语句,成本模式是
比较操作。
1.1 找出数组中最大的元素
注:数组也是对象,可用增强for
所有对象都有三大特性:
①状态:各个数据类型中的值。
②标识:将一个对象区别于另一个对象(内存地址)。
③行为:各个数据类型的操作。
1.2 计算数组元素的平均值
1.3 复制元素
1.4 颠倒数组元素的顺序
1.5 矩阵相乘
1.6 判断一个数是否是素数
1.7 计算平方根
1.8 计算调和级数 1+1/2+1/3+1/4+...+1/n
1.9 非递归之二分查找(数组已排好序)
2.0 递归之二分查找(数组已排好序)
2.1 将十进制转成二进制
2.2 判断是否为回文字符串(ABBA)
2.3 判断字符串是否排好序
2.4 背包、队列、栈
背包:先进后出,不支持删除元素的无序集合,只是收集元素并迭代遍历集合中的元素。
栈:先进后出,入栈顺序和初战顺序相反。
队列:先进先出,入列顺序和出列顺序相同。
2.5 双栈解决求算术表达式的值
①将操作数压入操作数栈;
②将运算符压入运算符栈;
③忽略左括号;
④遇到右括号,弹出一个运算符,弹出所需数量的操作数,并将运算符和操作数的运算结果
压入操作数栈;
⑤处理完最后一个右括号之后,操作数栈上只会有一个值,该值就是表达式的值;
注:为表达式先加上左右括号;
⑥括号的对数 = 数字个数 - 1;
2.6 下压(LIFO先进后出)栈(动态调整栈的大小,数组实现)
private class ResizeArrayStack<Item> { private Item[] a = (Item[]) new Object[1];//栈元素 private int N = 0; public boolean isEmpty() {return N == 0;} public int size() {return N;} //扩容 private void resize(int max) { //将栈元素移动到一个大小为max的新数组中 Item[] temp = (Item[]) new Object[max];//栈元素 for (int i = 0; i < N; i++) { temp[i] = a[i]; } a = temp; } public void push(Item item) { //将元素添加到栈顶 if (N == a.length) { resize(2 * a.length); } a[N++] = item; } public Item pop() { //从栈顶删除元素 Item item = a[--N]; a[N] = null;//避免对象游离,null会被垃圾回收器回收 //缩容 if (N > 0 && N == (a.length / 4)) { resize(a.length / 2); } return item; } public Iterable<Item> iterator() { return (Iterable<Item>) new ReverseArrayIterator(); } private class ReverseArrayIterator { private int i = N; public boolean hasNext() { return i > 0; } public Item next() { return a[--i]; } } }
2.7 栈或背包(LIFO先进后出)(链表实现)
public class MyStack<Item> { private class Node { Item item; Node next; } private Node first;//栈顶(最近添加的元素) private int N;//元素数量 public boolean isEmpty() { return N == 0; } public int size() { return N; } public void push(Item item) { //向栈顶添加元素 Node oldFirst = first; first = new Node(); first.item = item; first.next = oldFirst; N++; } public Item pop() { //从栈顶删除元素 Item item = first.item; first = first.next; N--; return item; } }
2.8 实现队列(先进先出)
public class MyQueue<Item> { private class Node { Item item; Node next; } private Node first;//指向最早添加的结点的链接 private Node last;//指向最近添加的结点的连接 private int N;//队列中的元素数量 public boolean isEmpty() { return N == 0; } public int size() { return N; } public void enqueue(Item item) { //向表尾添加元素 Node oldLast = last; last = new Node(); last.item = item; last.next = null; if (isEmpty()) { first = last; } else { //老元素下一个指向新元素 oldLast.next = last; } N++; } public Item dequeue() { //从表头中删除元素 Item item = first.item; //本身直接等于本身指向的下一个元素 first = first.next; if (isEmpty()) { last = null; } N--; return item; } }
2.9 2-sum问题-->线性对数级别的解法
①如果二分查找不成功则返回 -1,不增加计算器的值;
②如果二分查找返回的下标索引 j > i,则 a[i] + a[j] = 0,计数器加1;
③如果二分查找返回的下标索引 j 在 0 和 i 之间,则 a[i] + a[j] = 0,但是计数器已经加过了,
不需要再累加了;
注:基于所有整数均不相同,归并排序所需时间是NlogN成正比,二分查找所需时间和logN
成正比。该算法可计算100万个整数对。
3.0 3-sum问题-->N²logN级别的解决
当且仅当 -( a[i] + a[j] ) 在数组中时,整数对( a[i] + a[j] )为某个和为 0 的三元组的一部分。
注:基于所有整数均不相同。该算法可计算100万个整数对。
3.1 union-find算法-->加权quick_union实现:
动态连通性
给定N对整数对(即P和Q是相连),这些整数对具有传递性(即P和Q相连,Q和R相连,则P和Q相连),编写一个程序过滤掉原来无意义的整数对(即它们不相连),和判断一对新对象是否相连。这就是动态连通性问题。
public class union_find {
//父链接数组(每一个点为触点索引)
private int[] id;
//(由触点索引的)各个根节点所对应的分量的大小
private int[] sz;
//连通分量数量(单独存在的一个或多个连接触点)
private int count;
public union_find(int n) {
//初始化id数组和连通分量
count = n; id = new int[n]; sz = new int[n];
for (int i = 0; i < n; i++) {
id[i] = i;
sz[i] = 1;
}
}
public boolean connected(int p, int q) {
return find(p) == find(q);
}
//加权quick-union算法实现
public int find(int p) {
if (p != id[p]) {
//如果原来位置的值变成b,则将当前值变为b
p = id[p];
}
return p;
}
//在p和q之间添加一条连接,连通分量数没有减少,则说明pq已经相连
public void union(int p, int q) {
int i = find(p); int j = find(q);
if (i == j) {
return;
}
//将小树的根节点连接到大树的根节点
if (sz[i] < sz[j]) {
id[i] = j;
sz[j] += sz[i];
} else {
id[j] = i;
sz[i] += sz[j];
}
count--;
}
public static void main(String[] args) {
union_find union_find = new union_find(11);
Scanner scanner = new Scanner(System.in);
while (true) {
int p = scanner.nextInt(); int q = scanner.nextInt();
//如果已经连通则忽略,id[p]=id[q],说明已经被pq(相连了)被归并了
if (union_find.connected(p, q)) {
System.out.println("过滤无意义的整数对:" + p + ":" + q);
continue;
}
//归并分量
union_find.union(p, q);
System.out.println("连通分量数:" + union_find.count);
}
}
}
加权quick_union算法时间复杂度为logN,最优算法还得是路径压缩的quick_union加权算法,只需要在find()中添加一个循环判断,将在路径遇到的所有节点都直接链接到根节点,这样得到的结果几乎完全扁平化的树了。// 查找节点所属的根节点,并进行路径压缩 private int find(int p) { if (p != id[p]) { // 路径压缩:将直接连接到根节点 id[p] = find(id[p]); } return id[p]; }
public class Main { public static void main(String[] args) { int n = 10; // 假设有10个节点 union_find uf = new union_find(n); uf.union(1, 2); uf.union(3, 4); uf.union(4, 5); System.out.println(uf.connected(1, 5)); // 输出:true } }