Deep Neural Networks

Next, learn how to build neural networks that can learn from neural networks of various various complex relationships.

Modularity:building up a complex network from simpler functional units

Today we'll see how to combine and modify these linear units to model more complex relationships.

1---Layers

Neural networks organize their neurons into classic layers. When we put these neurons together and input them in the same form, we get a dense layer.

Like this:

A dense layer of two neurons receiving two inputs and a bias.

It is understood that the neural network transforms each layer in a relatively simple way. Through a deep stack of layers, a neural network can transform its inputs in many complex ways. In a well-trained neural network, each layer brings us one step closer to a solution.💡

[🧐Many Kinds of Layers:

Layers are common in Keras because they are essentially the result of any type of data transformation. Both the convolutional layers and the recurrent layers use neurons to convert data, but the difference is the connection pattern. There are other types of layers that may be used for feature engineering or simple arithmetic.]

2---The Activation Function

It turns out that two dense layers with nothing in between are worse than one🥲. What we need is something non-linear and the activation function of the dense layer. 

The graph above shows that the neural network can adapt to curves when there is an activation function, and can only adapt to linear relationships when there is no activation function. 

The activation function is the function we apply to each layer for output, the most common is the rectifier function 𝑚𝑎𝑥(0,𝑥)

ReLU=rectified linear unit

Activation function=ReLU function

Applying the ReLU activation function to a neuron means that its output becomes       𝑚𝑎𝑥(0,w*𝑥+b)

Draw in a diagram like:

A rectified neuron 

3---Stacking Dense Layers

 Having just learned about nonlinearity, let's now learn how to stack layers to get complex data transformations.

We call the layer before the output layer hidden until we see the output.

Now, the output layer is the neuron(no ReLU function). But this will makes neural networks suitable for regression tasks and then used to predict some arbitrary, subjective data.

Other tasks, such as classification, may require activation function on the output. 

  • 9
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 深度神经网络Deep Neural Networks)是一种基于神经元模型的人工神经网络,它具有多个隐藏层,可以用于处理大规模的非线性问题。深度神经网络在图像识别、语音识别、自然语言处理等领域取得了很大的成功。 ### 回答2: 深度神经网络Deep Neural Networks)是一种基于神经元相互连接的机器学习模型。它由多个神经网络层次组成,每个层次都有很多的神经元。与传统的浅层神经网络相比,深度神经网络可以学习到更加抽象和复杂的特征表示。 深度神经网络的训练过程通常使用前向传播和反向传播算法。在前向传播过程中,输入数据从输入层逐层传播到输出层,每一层都通过激活函数将输入信号进行非线性转换,生成输出。然后,通过与真实结果进行比较,计算损失函数,并使用反向传播算法更新每个神经元的权重和偏置值,使得损失函数最小化。 深度神经网络在许多任务中表现出色,如图像分类、语音识别和自然语言处理等。这些模型可以通过训练大量数据来学习到更复杂的特征,从而提高模型的性能。此外,深度神经网络还可以通过迁移学习和预训练模型的技术来应对数据不足的问题。 尽管深度神经网络在许多领域中取得了显著的成功,但也存在一些挑战。首先,深度神经网络的训练通常需要大量的计算资源和时间。此外,深度网络的结构非常复杂,导致模型的解释性较差。因此,解释模型的决策过程和发现模型中的错误仍然是一个开放的问题。 总之,深度神经网络是一种强大的机器学习模型,可以学习到更复杂的特征,提高模型性能。随着技术的不断发展和研究的深入,深度神经网络将在各个领域中发挥更重要的作用。 ### 回答3: 深度神经网络Deep Neural Networks)是一种机器学习的模型,模仿人脑的神经网络结构和功能。它由多层神经元组成,每一层的神经元都会计算输入数据的线性组合,并通过激活函数将计算结果传递给下一层。 与传统的浅层神经网络相比,深度神经网络具有多层的隐藏层,这使得它能够更好地处理复杂的问题。深度神经网络通过逐层学习和特征提取,能够从输入数据中自动发现和学习更抽象和高级的特征。 深度神经网络在许多领域中取得了巨大的成功,如计算机视觉、自然语言处理和语音识别等。例如,在计算机视觉中,深度神经网络可以通过层层学习,识别图像中的物体、人脸或文字等特征。在自然语言处理中,它可以利用隐藏层的特征,实现机器翻译、文本分类或情感分析等任务。 然而,深度神经网络也面临一些挑战。首先,深度神经网络的训练需要大量的数据和计算资源,因为网络结构更加复杂,参数数量也会增加。其次,深度神经网络容易过拟合,即在训练集上表现良好,但在未见过的数据上表现较差。为了解决这个问题,研究人员提出了一些正则化方法,如dropout和L1/L2正则化等。 总的来说,深度神经网络是一种强大的机器学习模型,可以自动从数据中学习和发现特征。它在各种应用领域有着广泛的应用,并且将会在未来的研究中不断演进和改进。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值