风险过程入门阅读笔记

目录

缩写

股息壁垒\障碍分红(Dividend Barrier)

拉普拉斯变换

Lévy过程

更新方程

更新过程

Esschar变换

Erlang分布

Malthusian参数

Coxian分布


部分相关概念:

缩写

df (Distibution Function):在统计学中,“df”可以指累积分布函数(Cumulative Distribution Function, CDF)。CDF表示一个随机变量小于或等于某个特定值的概率。通常用大写字母F表示,例如F(x)表示随机变量X的累计分布函数。

pdf(Probability Density Function ):“pdf”代表概率密度函数,用于描述连续型随机变量的概率分布。它表示随机变量在某一点的概率密度,而不是直接给出概率值。通常用小写字母表示,例如f(x)表示随机变量X的概率密度函数。

i.e.  也就是,那就是,换句话说


股息壁垒\障碍分红(Dividend Barrier)

通常是指公司设定的一种策略或条件,用于限制或规定在支付普通股股息时的一些限制或要求。其设计旨在保护公司免受财务压力和确保股东在获得股息时能够享受稳定和可持续的收益。可采取多种形式,例如:

    1.固定比例条件: 公司可能规定只有在其盈利达到一定水平或超过固定比例时才支付股息。

    2.盈余限制: 公司可能规定只有在其留存盈余(未分配利润)达到一定数额后才能支付股息。

    3.财务稳定性条件: 公司可能要求在支付股息之前,其财务状况必须足够稳定,以确保可持续性。


拉普拉斯变换

一个定义在区间[0,\infty)的函数f(t),它的拉普拉斯变换式F(s)定义为

F(s)=\int_{0-}^{\infty}f(t)e^{-st}dt

F(s)成为f(t)的象函数,f(t)称为F(s)的原函数。通常用L[ ]表示对方括号里的时域函数作拉普拉斯变换,记作F(s)=L[f(t)]

eg.考虑一个随机变量X,其概率密度为f(x),想要计算期望E(X)可以通过拉普拉斯变换实现。假设拉普拉斯变换为

其中s是复数。对于连续r.v.X,期望值E(X)的计算公式为:

通过拉普拉斯变换,可以将f(x)转化为F(s),然后计算:


Lévy过程

是一类随机过程。通常用于建模具有"跳跃"性质的随机现象,例如金融领域中的股票价格、汇率或商品价格。与布朗运动不同,Lévy过程在短时间内允许发生跳跃。它的定义基于Lévy-Khinchin表示定理,该定理表明Lévy过程可以由三个部分组成:漂移项、布朗运动项和跳跃项。

Lévy过程的基本性质包括:

  1. 独立增量: Lévy过程的增量在不同的时间段上是独立的,这意味着在一个时间段上的变化不会影响其他时间段上的变化。

  2. 平稳性: Lévy过程是平稳的,这表示它的统计性质在时间上是不变的。

  3. 马尔可夫性: Lévy过程是满足马尔可夫性质的,即未来的发展仅取决于当前状态,而不依赖于过去的状态。

Lévy过程的具体形式可以有多种,其中一些常见的例子包括Lévy飞行、稳定Lévy过程和复合Poisson过程。


更新方程

定义 : 称如下形式的积分方程为更新方程

其中 H(t) , F(t) 为已知,且当 t<0 时 H(t) , F(t) 均为0。当 H(t) 在任何区间上有界时,称上述方程为适定(proper)更新方程,简称更新方程。


更新过程

定义 :设{{X_n,n=1,2,\dots}}是一列iid的非负随机变量,分布函数为F(x) (为了避免平凡的情况,设F(0)=P{X_n=0}\neq1,记\mu =E(X_n)=\int_{0}^{\infty}xdF(x),则0<\mu\leqslant \infty )。令T_n=\sum_{i=1}^{n}X_i,n\geqslant 1,T_0=0。我们把由

N(t)=sup \{n:T_n\leqslant t \}

定义的计数过程称为更新过程。


Esschar变换

即将一个概率密度f(x)转变为新的带有参数h的概率密度f(x;h)。定义如下:

f(x)是概率密度,则它的Esschar转换被定义为


Erlang分布

常用于描述一系列独立同分布的指数分布之和。Erlang分布在排队论和可靠性工程等领域经常被用来建模一系列事件的等待时间或寿命、在通信网络模拟中模拟报文传输的时间间隔。Erlang分布的pdf为:

其中:k 是分布的形状参数(一个正整数)。λ 是分布的比率参数(一个正实数)。Erlang分布的期望值(均值)和方差分别为:E=\tfrac{k}{\lambda }, D=\tfrac{k}{\lambda^{2} }

Erlang分布可以被认为是伽马分布的一个特例,其中形状参数为正整数。伽马分布是形状参数为任意实数的情况。


Malthusian参数

通常指的是马尔萨斯参数(Malthusian parameter),它与人口学中的马尔萨斯模型相关。通常用来表示人口的增长速率。在马尔萨斯模型中,人口(N)的增长速率与当前人口数成正比,即:

\frac{dN}{dt}=rN

其中,左边表示人口随时间的变化率。r 是马尔萨斯参数,表示每个人在单位时间内生出的新人口的数量。没有考虑资源限制等因素,因此在模型中,人口可能会无限制地增长。


Coxian分布

是一种概率分布,它是由阿尔伯特·伦纳德·科克斯(Albert Leonard Cox)引入的,用于建模生存分析(survival analysis)中的失效时间。Coxian分布是指数分布的混合分布,它描述了由多个指数分布组合而成的复杂系统。

Coxian分布的pdf通常写成如下形式:

f(x; \lambda, k_1, k_2, \ldots, k_n) = \sum_{i=1}^{n} \lambda_i e^{-\lambda_i x} \left(\prod_{j=1}^{i-1} \frac{k_j}{\lambda_j - \lambda_i}\right)

其中:x 是随机变量(失效时间)。\lambda _i​ 是分布的速率参数,表示每个指数分布的失效率。k_i​ 是分布的形状参数,用于描述每个指数分布的权重。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值