算法学习系列(二十二):最短路问题

本文详细介绍了图论中最短路问题的基本概念,包括Dijkstra算法、堆优化版Dijkstra、Bellman-Ford算法、SPFA算法以及Floyd算法。通过实例展示了如何解决不同情况下的最短路径问题,帮助读者掌握这些核心算法的应用。
摘要由CSDN通过智能技术生成

引言

这个最短路问题可以说是图论当中的基础问题,不管你干什么只要涉及图论中的问题的话,最短路问题都是你不可避免的,不论是在算法竞赛、考研、面试都是非常重要的,本文介绍了 D i j k s t r a Dijkstra Dijkstra 算法、堆优化版的 D i j k s t r a Dijkstra Dijkstra 算法、 B e l l m a n − F o r d Bellman-Ford BellmanFord 算法、 S P F A SPFA SPFA 算法、 F l o y d Floyd Floyd 算法的思想以及例题,并且介绍了在什么情况下用什么算法话不多说,直接开干。

一、最短路问题

这张图涵盖了所有的最短路问题,接下来就一一介绍啦!
单源:一个起点,多源:多个起点
解题技巧:大部分题可以先用spfa水一下,没过的可以用Dijkstra(稠密图),堆优化的一般很少写
在这里插入图片描述

二、朴素Dijkstra算法

思想:先找到一个点到起点的最短距离,然后再看能不能通过这个点更新其它点到起点的距离,然后再找到另一个点到起点的最短距离,再次更新,直至更新至终点

题目描述:

给定一个 n 个点 m 条边的有向图,图中可能存在重边和自环,所有边权均为正值。

请你求出 1 号点到 n号点的最短距离,如果无法从 1 号点走到 n 号点,则输出 −1。

输入格式
第一行包含整数 n 和 m。
接下来 m 行每行包含三个整数 x,y,z,表示存在一条从点 x 到点 y 的有向边,边长为 z。

输出格式
输出一个整数,表示 1 号点到 n 号点的最短距离。
如果路径不存在,则输出 −1。

数据范围
1≤n≤500,1≤m≤105,图中涉及边长均不超过10000。

输入样例:
3 3
1 2 2
2 3 1
1 3 4
输出样例:
3

示例代码:

#include <cstdio>
#include <cstring>
#include <iostream>

using namespace std;

const int N = 510;

int n, m;
int g[N][N];  //稠密图采用邻接矩阵存储方式
int dist[N];  //代表起点到i号点的最短距离
bool st[N];  //当前已确定最短距离的点

int dijkstra()
{
    memset(dist, 0x3f, sizeof dist);
    dist[1] = 0;
    
    for(int i = 0; i < n - 1; ++i)
    {
        int t = -1;
        for(int j = 1; j <= n; ++j)
        {
            if(!st[j] && (t == -1 || dist[t] > dist[j])) t = j;
        }
        
        for(int j = 1; j <= n; ++j) dist[j] = min(dist[j], dist[t] + g[t][j]);
        
        st[t] = true;
    }
    
    if(dist[n] == 0x3f3f3f3f) return -1;
    return dist[n];
}

int main()
{
    scanf("%d%d", &n, &m);
    
    memset(g, 0x3f, sizeof g);
    
    while(m--)
    {
        int a, b, c;
        scanf("%d%d%d", &a, &b, &c);
        g[a][b] = min(g[a][b], c);
    }
    
    printf("%d\n", dijkstra());
    
    return 0;
}

三、堆优化版的Dijkstra算法

这个堆优化版本的就是把找最短距离的边换成堆来优化就行了,把边全部加到堆中,然后每次取堆顶就行了

题目描述:

给定一个 n 个点 m 条边的有向图,图中可能存在重边和自环,所有边权均为非负值。

请你求出 1 号点到 n 号点的最短距离,如果无法从 1 号点走到 n 号点,则输出 −1。

输入格式
第一行包含整数 n 和 m。
接下来 m 行每行包含三个整数 x,y,z,表示存在一条从点 x 到点 y 的有向边,边长为 z。

输出格式
输出一个整数,表示 1 号点到 n 号点的最短距离。
如果路径不存在,则输出 −1。

数据范围
1≤n,m≤1.5×105,图中涉及边长均不小于 0,且不超过 10000。
数据保证:如果最短路存在,则最短路的长度不超过 109。

输入样例:
3 3
1 2 2
2 3 1
1 3 4
输出样例:
3

示例代码:

#include <cstdio>
#include <cstring>
#include <iostream>
#include <queue>

using namespace std;

typedef pair<int,int> PII;  //存的是权重, 结点编号

const int N = 2e5+10;

int n, m;
int h[N], e[N], w[N], ne[N], idx;  //因为是稀疏图用邻接表
int dist[N];
bool st[N];

void add(int a, int b, int c)
{
    e[idx] = b, w[idx] = c; ne[idx] = h[a], h[a] = idx++;
}

int dijkstra()
{
    memset(dist, 0x3f, sizeof dist);
    dist[1] = 0;
    
    priority_queue<PII, vector<PII>, greater<PII>> heap;  //初始化小根堆
    heap.push({0,1});
    
    while(heap.size())
    {
        auto t = heap.top(); heap.pop();
        
        int ver = t.second, distance = t.first;
        if(st[ver]) continue;
        st[ver] = true;
        
        for(int i = h[ver]; i != -1; i = ne[i])
        {
            int j = e[i];
            if(dist[j] > distance + w[i])
            {
                dist[j] = distance + w[i];
                heap.push({dist[j], j});
            }
        }
    }
    
    if(dist[n] == 0x3f3f3f3f) return -1;
    return dist[n];
}

int main()
{
    memset(h, -1, sizeof h);
    
    scanf("%d%d", &n, &m);
    
    while(m--)
    {
        int a, b, c;
        scanf("%d%d%d", &a, &b, &c);
        add(a, b, c);
    }
    
    printf("%d\n",dijkstra());
    
    return 0;
}

四、Bellman-Ford算法

思想:通过遍历 k k k 次,每次都遍历所有边更新所有边

题目描述:

给定一个 n 个点 m 条边的有向图,图中可能存在重边和自环, 边权可能为负数。

请你求出从 1 号点到 n 号点的最多经过 k 条边的最短距离,如果无法从 1 号点走到 n 号点,输出 impossible。
注意:图中可能 存在负权回路 。

输入格式
第一行包含三个整数 n,m,k。
接下来 m 行,每行包含三个整数 x,y,z,表示存在一条从点 x 到点 y 的有向边,边长为 z。点的编号为 1∼n。

输出格式
输出一个整数,表示从 1 号点到 n 号点的最多经过 k 条边的最短距离。
如果不存在满足条件的路径,则输出 impossible。

数据范围
1≤n,k≤500,1≤m≤10000,1≤x,y≤n,
任意边长的绝对值不超过 10000。

输入样例:
3 3 1
1 2 1
2 3 1
1 3 3

输出样例:
3

示例代码:

#include <cstdio>
#include <cstring>
#include <iostream>

using namespace std;

const int N = 510, M = 10010;

int n, m, k;
int dist[N], backup[N];

struct Edge
{
    int a, b, c;
}edges[M];

void bellman_ford()
{
    memset(dist, 0x3f, sizeof dist);
    dist[1] = 0;
    
    for(int i = 0; i < k; ++i)
    {
        memcpy(backup, dist, sizeof dist);  //防止串行赋值导致超出k次
        for(int j = 0; j < m; ++j)
        {
            auto e = edges[j];
            dist[e.b] = min(dist[e.b], backup[e.a] + e.c);  //每次只会通过一个顶点更新边
        }
    }
}

int main()
{
    scanf("%d%d%d", &n, &m, &k);
    
    for(int i = 0; i < m; ++i)
    {
        int a, b, c;
        scanf("%d%d%d", &a, &b, &c);
        edges[i] = {a,b,c};
    }
    
    bellman_ford();
    
    if(dist[n] > 0x3f3f3f3f / 2) puts("impossible");  //因为更新边要是INF+ -1 也是INF, 但不是0x3f3f3f3f了
    else printf("%d\n", dist[n]);
    
    return 0;
}

五、SPFA算法

思想:把第一个点加入队列中,然后用这个点更新与之相连的点,然后把更新的点加入队列中,把之前的点取出队列

题目描述:

给定一个 n 个点 m 条边的有向图,图中可能存在重边和自环, 边权可能为负数。
请你求出 1 号点到 n 号点的最短距离,如果无法从 1 号点走到 n 号点,则输出 impossible。
数据保证不存在负权回路。

输入格式
第一行包含整数 n 和 m。
接下来 m 行每行包含三个整数 x,y,z,表示存在一条从点 x 到点 y 的有向边,边长为 z。

输出格式
输出一个整数,表示 1 号点到 n 号点的最短距离。
如果路径不存在,则输出 impossible。

数据范围
1≤n,m≤105,图中涉及边长绝对值均不超过 10000。

输入样例:
3 3
1 2 5
2 3 -3
1 3 4
输出样例:
2

示例代码:

#include <cstdio>
#include <cstring>
#include <iostream>

using namespace std;

const int N = 1e5+10;

int n, m;
int h[N], e[N], w[N], ne[N], idx;
int dist[N], q[N];
bool st[N];

void add(int a, int b, int c)
{
    e[idx] = b, w[idx] = c, ne[idx] = h[a], h[a] = idx++;
}

int spfa()
{
    memset(dist, 0x3f, sizeof dist);
    dist[1] = 0;
    st[1] = true;
    
    int hh = 0, tt = -1;
    q[++tt] = 1;
    while(hh <= tt)
    {
        auto t = q[hh++];
        
        st[t] = false;
        
        for(int i = h[t]; i != -1; i = ne[i])
        {
            int j = e[i];
            if(dist[j] > dist[t] + w[i])
            {
                dist[j] = dist[t] + w[i];
                if(!st[j])
                {
                    q[++tt] = j;
                    st[j] = true;
                }
            }
        }
    }
    
    return dist[n];
}

int main()
{
    memset(h, -1, sizeof h);
    
    scanf("%d%d", &n, &m);
    
    while(m--)
    {
        int a, b, c;
        scanf("%d%d%d", &a, &b, &c);
        add(a, b, c);
    }
    
    int t = spfa();
    
    if(t == 0x3f3f3f3f) puts("impossible");
    else printf("%d\n", t);
    
    return 0;
}

六、Floyd算法

这个算法基于动态规划, d i s t [ i ] [ j ] dist[i][j] dist[i][j] 刚开始跟 g [ i ] [ b ] g[i][b] g[i][b] 一样,之后就变成了 i ∼ j i \sim j ij 的最短距离
d i s t ( k , i , j ) 代表从 i − j 能经过 1 − k 个点的最短距离 dist(k, i, j) 代表从i - j 能经过 1 - k 个点的最短距离 dist(k,i,j)代表从ij能经过1k个点的最短距离 d i s t ( k , i , j ) = d i s t ( k − 1 , i , k ) + d i s t ( k − 1 , k , j ) dist(k, i, j) = dist(k-1, i, k) + dist(k-1, k, j) dist(k,i,j)=dist(k1,i,k)+dist(k1,k,j)

题目描述:

给定一个 n 个点 m 条边的有向图,图中可能存在重边和自环,边权可能为负数。
再给定 k 个询问,每个询问包含两个整数 x 和 y,表示查询从点 x 到点 y的最短距离,如果路径不存在,则输出 impossible。
数据保证图中不存在负权回路。

输入格式
第一行包含三个整数 n,m,k。
接下来 m 行,每行包含三个整数 x,y,z,表示存在一条从点 x 到点 y 的有向边,边长为 z。
接下来 k 行,每行包含两个整数 x,y,表示询问点 x 到点 y 的最短距离。

输出格式
共 k 行,每行输出一个整数,表示询问的结果,若询问两点间不存在路径,则输出 impossible。
数据范围
1≤n≤200,1≤k≤n21≤m≤20000,图中涉及边长绝对值均不超过 10000。

输入样例:
3 3 2
1 2 1
2 3 2
1 3 1
2 1
1 3

输出样例:
impossible
1

示例代码:

#include <cstdio>
#include <cstring>
#include <iostream>

using namespace std;

const int N = 210, INF = 1e9;

int n, m, Q;
int dist[N][N];

void floyd()
{
    for(int k = 1; k <= n; ++k)
        for(int i = 1; i <= n; ++i)
            for(int j = 1; j <= n; ++j)
                dist[i][j] = min(dist[i][j], dist[i][k] + dist[k][j]);
}

int main()
{
    scanf("%d%d%d", &n, &m, &Q);
    
    for(int i = 1; i <= n; ++i)
    {
        for(int j = 1; j <= n; ++j)
        {
            if(i == j) dist[i][j] = 0;
            else dist[i][j] = INF;
        }
    }
    
    while(m--)
    {
        int a, b, c;
        scanf("%d%d%d", &a, &b, &c);
        dist[a][b] = min(dist[a][b], c);
    }
    
    floyd();
    
    while(Q--)
    {
        int a, b;
        scanf("%d%d", &a, &b);
        
        if(dist[a][b] > INF / 2) puts("impossible");
        else printf("%d\n", dist[a][b]);
    }
    
    return 0;
}
  • 20
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

lijiachang030718

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值