算法刷题day48:线性DP—数字三角形模型

引言

关于这个线性 D P DP DP 我觉得出的概率还是很大的,因为比较的基础,但是稍微变一下就需要一点思考了,也就是举一反三的能力,所以我觉得这种题还是有可能的,属于是简单题但是需要点思维才能解出来。然后主要的类型就是数字三角形模型和最长上升子序模型,也就这两个,属于是一维、二维坐标系里取最值得一类,然后还是见的多了就会做了。讲解方式还是看题,其实本来我写博客就是为我自己方便复习用的,还是以实用为主啊,那就开始吧!


一、数字三角形

标签:动态规划、线性DP

思路:首先是定义状态,基本是这种几维的,就是几个维度就行了, f [ i ] [ j ] f[i][j] f[i][j] 代表从起点走到 ( i , j ) (i,j) (i,j) 的最大值,我总结了一套方法,首先先把所有的状态初始化为非法状态就是永远取不到的一个状态,比如求最大值就都初始化为最小值,求最小值就都初始化为最大值,求方案数就都初始化为 0 0 0 ,然后进行推导,这里需要对起点特判,因为起点不需要依靠任何的点,所以在遍历的时候需要特判一下。然后剩余的就是按照由上到下由左到右的顺序,也就是由小到大的顺序遍历。

题目描述:

给定一个如下图所示的数字三角形,从顶部出发,在每一结点可以选择移动至其左下方的结点或移动至其右下方的结点,一直
走到底层,要求找出一条路径,使路径上的数字的和最大。

        7
      3   8
    8   1   0
  2   7   4   4
4   5   2   6   5
输入格式
第一行包含整数 n,表示数字三角形的层数。

接下来 n 行,每行包含若干整数,其中第 i 行表示数字三角形第 i 层包含的整数。

输出格式
输出一个整数,表示最大的路径数字和。

数据范围
1≤n≤500,−10000≤三角形中的整数≤10000
输入样例:
5
7
3 8
8 1 0 
2 7 4 4
4 5 2 6 5
输出样例:
30

示例代码:

#include <bits/stdc++.h>

using namespace std;

typedef long long LL;
typedef pair<int,int> PII;
#define x first
#define y second

const int N = 510, M = N, INF = 0x3f3f3f3f;

int n, m;
int a[N][N], f[N][N]; 

int main()
{
	ios::sync_with_stdio(0); cin.tie(0); cout.tie(0);
	
	cin >> n;
	for(int i = 1; i <= n; ++i)
	{
		for(int j = 1; j <= i; ++j)
		{
			cin >> a[i][j];
		}
	}
	
	memset(f, -0x3f, sizeof f);
	for(int i = 1; i <= n; ++i)
	{
		for(int j = 1; j <= i; ++j)
		{
		    if(i == 1 && j == 1) f[i][j] = a[i][j];
			else f[i][j] = max(f[i-1][j-1], f[i-1][j]) + a[i][j];
		}
	}
	
	int res = -2e9;
	for(int i = 1; i <= n; ++i) res = max(res, f[n][i]);
	cout << res << endl;
	
	return 0;
}

二、摘花生

标签:DP、线性DP

思路:状态定义: f [ i ] [ j ] f[i][j] f[i][j] 从起点走到 ( i , j ) (i,j) (i,j) 点的最大值,首先将全部状态初始化为负无穷,然后进行状态计算,由于 ( 1 , 1 ) (1,1) (1,1) 不依赖于任何状态,所以要特判一下,然后就是当前的状态由从上走或者从左走里找出最大的一个状态即可。

题目描述:

Hello Kitty想摘点花生送给她喜欢的米老鼠。

她来到一片有网格状道路的矩形花生地(如下图),从西北角进去,东南角出来。

地里每个道路的交叉点上都有种着一株花生苗,上面有若干颗花生,经过一株花生苗就能摘走该它上面所有的花生。

Hello Kitty只能向东或向南走,不能向西或向北走。

问Hello Kitty最多能够摘到多少颗花生。

1.gif

输入格式
第一行是一个整数T,代表一共有多少组数据。

接下来是T组数据。

每组数据的第一行是两个整数,分别代表花生苗的行数R和列数 C。

每组数据的接下来R行数据,从北向南依次描述每行花生苗的情况。每行数据有C个整数,按从西向东的顺序描述了该行每株花生
苗上的花生数目M。

输出格式
对每组输入数据,输出一行,内容为Hello Kitty能摘到得最多的花生颗数。

数据范围
1≤T≤100,1≤R,C≤100,0≤M≤1000
输入样例:
2
2 2
1 1
3 4
2 3
2 3 4
1 6 5
输出样例:
8
16

示例代码:

#include <bits/stdc++.h>

using namespace std;

typedef long long LL;
typedef pair<int,int> PII;
#define x first
#define y second

const int N = 110, M = N, INF = 0x3f3f3f3f;

int n, m;
int w[N][N], f[N][N];

int main()
{
	ios::sync_with_stdio(0); cin.tie(0); cout.tie(0);
	
	int T; cin >> T;
	while(T--)
	{
		int r, c; cin >> r >> c;
		for(int i = 1; i <= r; ++i)
		{
			for(int j = 1; j <= c; ++j)
			{
				cin >> w[i][j];
			}
		}
		
		memset(f, -0x3f, sizeof f);
		f[1][1] = w[1][1];
		for(int i = 1; i <= r; ++i)
		{
			for(int j = 1; j <= c; ++j)
			{
			    if(i == 1 && j == 1) f[i][j] = w[i][j];
				else f[i][j] = max(f[i-1][j], f[i][j-1]) + w[i][j];	
			} 
		}
		
		cout << f[r][c] << endl;
	}
	
	return 0;
}

三、最低通行费

标签:DP、线性DP

思路:首先题目的限制是必须在 2 ∗ N − 1 2*N-1 2N1 个时间单位穿过去,如果不往回走,也就是只往右或者往下走,也就恰好 2 ∗ N − 1 2*N-1 2N1 个时间单位,所以这道题的限制意味着只能向右或者向下走。然后状态定义跟之前的一模一样。首先初始化所有状态为正无穷,由于起点不受其它状态依赖,所以得特判一下,然后就是从左或者上取一个最小值迭代下去即可。

题目描述:

一个商人穿过一个 N×N 的正方形的网格,去参加一个非常重要的商务活动。

他要从网格的左上角进,右下角出。

每穿越中间 1 个小方格,都要花费 1 个单位时间。

商人必须在 (2N−1) 个单位时间穿越出去。

而在经过中间的每个小方格时,都需要缴纳一定的费用。

这个商人期望在规定时间内用最少费用穿越出去。

请问至少需要多少费用?

注意:不能对角穿越各个小方格(即,只能向上下左右四个方向移动且不能离开网格)。

输入格式
第一行是一个整数,表示正方形的宽度 N。

后面 N 行,每行 N 个不大于 100 的正整数,为网格上每个小方格的费用。

输出格式
输出一个整数,表示至少需要的费用。

数据范围
1≤N≤100
输入样例:
5
1  4  6  8  10
2  5  7  15 17
6  8  9  18 20
10 11 12 19 21
20 23 25 29 33
输出样例:
109
样例解释
样例中,最小值为 109=1+2+5+7+9+12+19+21+33。

示例代码:

#include <bits/stdc++.h>

using namespace std;

typedef long long LL;
typedef pair<int,int> PII;
#define x first
#define y second

const int N = 110, M = N, INF = 0x3f3f3f3f;

int n, m;
int w[N][N], f[N][N];

int main()
{
	ios::sync_with_stdio(0); cin.tie(0); cout.tie(0);
	
	cin >> n;
	for(int i = 1; i <= n; ++i)
	{
		for(int j = 1; j <= n; ++j)
		{
			cin >> w[i][j];
		}
	}
	
	memset(f, 0x3f, sizeof f);
	for(int i = 1; i <= n; ++i)
	{
		for(int j = 1; j <= n; ++j)
		{
			if(i == 1 && j == 1) f[i][j] = w[i][j]; 
			else f[i][j] = min(f[i-1][j], f[i][j-1]) + w[i][j];
		}
	}
	
	cout << f[n][n] << endl;
	
	return 0;
}

四、方格取数

标签:DP、线性DP

思路:这道题不同的是,有两条路径,然后只能一起走,不能一个一个走,因为局部最优的和不一定是全局最优的。我们定义状态 f [ i 1 ] [ j 1 ] [ i 2 ] [ j 2 ] f[i1][j1][i2][j2] f[i1][j1][i2][j2] ,因为是一起走,我们可以省略一些状态,用步数来代替,即 f [ k ] [ i 1 ] [ i 2 ] f[k][i1][i2] f[k][i1][i2] 代表从起点到该状态的横纵坐标和为 k k k ,第一个人的横坐标为 i 1 i1 i1 ,第二个人的横坐标为 i 2 i2 i2 的总和最大值,然后这样就能省下空间了,然后进行状态计算,每个人有两种走法,两个人就有四种走法,所以就是从这四个方向走到 ( i 1 , i 2 ) (i1,i2) (i1,i2) 状态的最大值,这里值得注意的是如果两个人走到同一个格子里,那么这个数只能被算一次,然后进行推导即可。

题目描述:

设有 N×N 的方格图,我们在其中的某些方格中填入正整数,而其它的方格中则放入数字0。如下图所示:

2.gif

某人从图中的左上角 A 出发,可以向下行走,也可以向右行走,直到到达右下角的 B 点。

在走过的路上,他可以取走方格中的数(取走后的方格中将变为数字0)。

此人从 A 点到 B 点共走了两次,试找出两条这样的路径,使得取得的数字和为最大。

输入格式
第一行为一个整数N,表示 N×N 的方格图。

接下来的每行有三个整数,第一个为行号数,第二个为列号数,第三个为在该行、该列上所放的数。

行和列编号从 1 开始。

一行“0 0 0”表示结束。

输出格式
输出一个整数,表示两条路径上取得的最大的和。

数据范围
N≤10
输入样例:
8
2 3 13
2 6 6
3 5 7
4 4 14
5 2 21
5 6 4
6 3 15
7 2 14
0 0 0
输出样例:
67

示例代码:

#include <bits/stdc++.h>

using namespace std;

typedef long long LL;
typedef pair<int,int> PII;
#define x first
#define y second

const int N = 11, M = N, INF = 0x3f3f3f3f;

int n, m;
int w[N][N], f[N*2][N][N];

int main()
{
	ios::sync_with_stdio(0); cin.tie(0); cout.tie(0);
	
	cin >> n;
	int a, b, c;
	while(cin >> a >> b >> c, a || b || c)
	{
		w[a][b] = c;
	}
	
	memset(f, -0x3f, sizeof f);
	for(int k = 2; k <= n * 2; ++k)
	{
		for(int i1 = 1; i1 <= n; ++i1)
		{
			for(int i2 = 1; i2 <= n; ++i2)
			{
				int j1 = k - i1, j2 = k - i2;
				if(i1 == 1 && i2 == 1 && k == 2) f[k][i1][i2] = w[1][1];
				if(j1 >= 1 && j1 <= n && j2 >= 1 && j2 <= n)
				{
					int& v = f[k][i1][i2];
					int t = w[i1][j1];
					if(i1 != i2) t += w[i2][j2];
					
					v = max(v, f[k-1][i1-1][i2-1] + t);
					v = max(v, f[k-1][i1-1][i2] + t);
					v = max(v, f[k-1][i1][i2-1] + t);
					v = max(v, f[k-1][i1][i2] + t);
				}
			}
		}
	}
	
	cout << f[n*2][n][n] << endl;
	
	return 0;
}

五、传纸条

标签:DP、线性DP

思路:跟上一题几乎是一模一样,就是行列是不一样的,在输入的时候处理一下就行了。

题目描述:

小渊和小轩是好朋友也是同班同学,他们在一起总有谈不完的话题。

一次素质拓展活动中,班上同学安排坐成一个 m 行 n 列的矩阵,而小渊和小轩被安排在矩阵对角线的两端,因此,他们就无法直
接交谈了。

幸运的是,他们可以通过传纸条来进行交流。

纸条要经由许多同学传到对方手里,小渊坐在矩阵的左上角,坐标 (1,1),小轩坐在矩阵的右下角,坐标 (m,n)。

从小渊传到小轩的纸条只可以向下或者向右传递,从小轩传给小渊的纸条只可以向上或者向左传递。 

在活动进行中,小渊希望给小轩传递一张纸条,同时希望小轩给他回复。

班里每个同学都可以帮他们传递,但只会帮他们一次,也就是说如果此人在小渊递给小轩纸条的时候帮忙,那么在小轩递给小渊
的时候就不会再帮忙,反之亦然。 

还有一件事情需要注意,全班每个同学愿意帮忙的好感度有高有低(注意:小渊和小轩的好心程度没有定义,输入时用 0 表示),
可以用一个 0∼100 的自然数来表示,数越大表示越好心。

小渊和小轩希望尽可能找好心程度高的同学来帮忙传纸条,即找到来回两条传递路径,使得这两条路径上同学的好心程度之和最大。

现在,请你帮助小渊和小轩找到这样的两条路径。

输入格式
第一行有 2 个用空格隔开的整数 m 和 n,表示学生矩阵有 m 行 n 列。

接下来的 m 行是一个 m×n 的矩阵,矩阵中第 i 行 j 列的整数表示坐在第 i 行 j 列的学生的好心程度,每行的 n 个整数之间用空格隔开。

输出格式
输出一个整数,表示来回两条路上参与传递纸条的学生的好心程度之和的最大值。

数据范围
1≤n,m≤50
输入样例:
3 3
0 3 9
2 8 5
5 7 0
输出样例:
34

示例代码:

#include <bits/stdc++.h>

using namespace std;

typedef long long LL;
typedef pair<int,int> PII;
#define x first
#define y second

const int N = 51, M = N, INF = 0x3f3f3f3f;

int n, m;
int w[N][N], f[N*2][N][N];

int main()
{
	ios::sync_with_stdio(0); cin.tie(0); cout.tie(0);
	
	cin >> n >> m;
	for(int i = 1; i <= n; ++i)
	{
	    for(int j = 1; j <= m; ++j)
	    {
	        cin >> w[i][j];
	    }
	}
	
	memset(f, -0x3f, sizeof f);
	for(int k = 2; k <= n + m; ++k)
	{
		for(int i1 = 1; i1 <= n; ++i1)
		{
			for(int i2 = 1; i2 <= n; ++i2)
			{
				int j1 = k - i1, j2 = k - i2;
				if(i1 == 1 && i2 == 1 && k == 2) f[k][i1][i2] = w[1][1];
				if(j1 >= 1 && j1 <= m && j2 >= 1 && j2 <= m)
				{
					int& v = f[k][i1][i2];
					int t = w[i1][j1];
					if(i1 != i2) t += w[i2][j2];
					
					v = max(v, f[k-1][i1-1][i2-1] + t);
					v = max(v, f[k-1][i1-1][i2] + t);
					v = max(v, f[k-1][i1][i2-1] + t);
					v = max(v, f[k-1][i1][i2] + t);
				}
			}
		}
	}
	
	cout << f[n+m][n][n] << endl;
	
	return 0;
}

六、最长公共子序列

标签:动态规划、线性DP

思路:一般这种两个字符串的就定义为两维,状态定义 f [ i ] [ j ] f[i][j] f[i][j] 代表第一个子串中前 i i i 个字符和第二个子串中前 j j j 个字符中的最长公共子序列的长度,由最后一步原则可以得知,总共有四种情况,选或者不选的二次幂,然后 f [ i − 1 ] [ j ] , f [ i ] [ j − 1 ] f[i-1][j],f[i][j-1] f[i1][j],f[i][j1] 已经代表了三种情况,即两个不选,和其中一个选,虽然这种状态不是很确切,因为定义为前 i i i 个,不是包括第 i i i 个,但这种状态包括了它,又因为求的是最值所以可以重合,然后如果这两个字符相等那就是两个都不选加上一。

题目描述:

给定两个长度分别为 N 和 M 的字符串 A 和 B,求既是 A 的子序列又是 B 的子序列的字符串长度最长是多少。

输入格式
第一行包含两个整数 N 和 M。

第二行包含一个长度为 N 的字符串,表示字符串 A。

第三行包含一个长度为 M 的字符串,表示字符串 B。

字符串均由小写字母构成。

输出格式
输出一个整数,表示最大长度。

数据范围
1≤N,M≤1000
输入样例:
4 5
acbd
abedc
输出样例:
3

示例代码:

#include <bits/stdc++.h>

using namespace std;

typedef long long LL;
typedef pair<int,int> PII;
#define x first
#define y second

const int N = 1010, M = N, INF = 0x3f3f3f3f;

int n, m;
char a[N], b[N];
int f[N][N];

int main()
{
	ios::sync_with_stdio(0); cin.tie(0); cout.tie(0);
	
	cin >> n >> m >> a + 1 >> b + 1;
	
	for(int i = 1; i <= n; ++i)
	{
		for(int j = 1; j <= m; ++j)
		{
			f[i][j] = max(f[i-1][j], f[i][j-1]);
			if(a[i] == b[j]) f[i][j] = max(f[i][j], f[i-1][j-1]+1);
		}
	}
	
	cout << f[n][m] << endl;
	
	return 0;
}

七、最短编辑距离

标签:动态规划、线性DP

思路:首先两个字符状态定义是两维的,然后定义状态 f [ i ] [ j ] f[i][j] f[i][j] 代表字符串 A A A 中的前 i i i 个字符要变为字符串 B B B 中的前 j j j 个字符所需要花费的最少操作。首先全部初始化为正无穷,然后对其已知的状态赋值也就是删除和插入操作,见代码。然后进行推导,当前的状态是由三种状态转移过来的,就是删除、插入、替换,然后对应的状态就是 f [ i − 1 ] [ j ] , f [ i ] [ j − 1 ] , f [ i − 1 ] [ j − 1 ] f[i-1][j],f[i][j-1],f[i-1][j-1] f[i1][j],f[i][j1],f[i1][j1] ,然后取极值即可。

题目描述:

给定两个字符串 A 和 B,现在要将 A 经过若干操作变为 B,可进行的操作有:

删除–将字符串 A 中的某个字符删除。
插入–在字符串 A 的某个位置插入某个字符。
替换–将字符串 A 中的某个字符替换为另一个字符。
现在请你求出,将 A 变为 B 至少需要进行多少次操作。

输入格式
第一行包含整数 n,表示字符串 A 的长度。

第二行包含一个长度为 n 的字符串 A。

第三行包含整数 m,表示字符串 B 的长度。

第四行包含一个长度为 m 的字符串 B。

字符串中均只包含大小写字母。

输出格式
输出一个整数,表示最少操作次数。

数据范围
1≤n,m≤1000
输入样例:
10
AGTCTGACGC
11
AGTAAGTAGGC
输出样例:
4

示例代码:

#include <bits/stdc++.h>

using namespace std;

typedef long long LL;
typedef pair<int,int> PII;
#define x first
#define y second

const int N = 1010, M = N, INF = 0x3f3f3f3f;

int n, m;
char a[N], b[N];
int f[N][N];

int main()
{
	ios::sync_with_stdio(0); cin.tie(0); cout.tie(0);
	
	cin >> n >> a + 1 >> m >> b + 1;
	
	memset(f, 0x3f, sizeof f);
	for(int i = 0; i <= n; ++i) f[i][0] = i;  // 删除
	for(int i = 0; i <= m; ++i) f[0][i] = i;  // 插入
	
	for(int i = 1; i <= n; ++i)
	{
		for(int j = 1; j <= m; ++j)
		{
			f[i][j] = min(f[i-1][j],f[i][j-1]) + 1;
			if(a[i] == b[j]) f[i][j] = min(f[i][j], f[i-1][j-1]);
			else f[i][j] = min(f[i][j], f[i-1][j-1]+1);
		}
	}
	
	cout << f[n][m] << endl;
	
	return 0;
}
  • 21
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
### 回答1: 线性回归是一种常用的数据挖掘算法,它可以用来预测连续型变量的值。在房价预测中,我们可以使用线性回归来预测房价。线性回归的原理是通过建立一个线性方程来描述自变量和因变量之间的关系,然后利用已知的自变量和因变量的数据来拟合这个方程,从而得到一个预测模型。在房价预测中,我们可以将房屋的面积、房间数量、地理位置等作为自变量,将房价作为因变量,然后利用已知的房屋数据来拟合一个线性方程,从而得到一个预测模型,用来预测未知房屋的价格。实践中,我们可以使用Python等编程语言来实现线性回归算法,利用已知的数据来训练模型,然后使用模型来预测未知数据的结果。 ### 回答2: 线性回归是一种用于预测连续变量的监督学习算法。在房价预测中,线性回归可以通过利用历史数据和相关因素,如房屋面积、位置和装修状况等,预测房屋的售价。 线性回归的原理是拟合一条直线来近似预测目标变量和输入因素之间的关系。这条直线被称为回归线。回归线的斜率和截距分别表示输入因素和目标变量之间的关系和预测模型的截距。 在实践中,我们需要将数据集分成训练集和测试集。从训练集中选取一个子集,用来训练模型。一旦模型被训练完成,我们可以使用测试集来评估其准确性和泛化能力。 线性回归的评估指标包括平均平方误差(Mean Squared Error,MSE)和均方根误差(Root Mean Squared Error,RMSE)。MSE 衡量模型预测与实际数据之间差异的平方和的平均值。RMSE 是 MSE 的平方根。 在实践中,我们需要注意一些问题。例如,数据集的特征选择,是否需要进行数据缩放,异常值或离群值的处理,以及是否需要进行特征工程或增加多项式特征。此外,在模型的选择上,我们可以使用不同的正则化方法,如岭回归和 Lasso。这些方法可以避免过拟合和提高模型的泛化能力。 总之,线性回归是一种简单但有效的预测房价的模型。但是,在实际应用中,我们需要结合领域知识和业务需求来调整和优化模型,以提高其性能和可靠性。 ### 回答3: 线性回归是数据挖掘中常用的一种算法,通过对已有的数据进行分析和学习,建立一个线性模型,以此来预测新的未知数据。 在房价预测中,线性回归可以用来预测房价与其它因素的关系,如房屋面积、房龄、地段、物业等。通过建立一个线性方程,可以将这些因素与房价之间的关系用数学形式表示出来,对于未知的房屋可以通过该方程来预测其价格。 线性回归的原理是基于一组数据集,其中包含了预测变量和响应变量的数据。通过这些数据建立了一个回归方程,以预测响应变量的值。回归方程是一条直线,它用输入变量的值来预测输出变量的值。线性回归中的许多算法使用误差平方和来评估回归模型的好坏。误差平方和是指所有观测值与预测值之间差的平方和。 线性回归算法的实践需要经历以下步骤: 1. 数据收集:收集房屋的各种信息,包括房屋价格、面积、年龄、地理位置、物业等。 2. 数据处理:清洗数据,排除不合理或者有误的数据,并将数据进行统一的格式化处理。 3. 特征工程:在收集的数据中,选取与房价相关的因素,将其进行特征选择,处理成线性回归算法所能接受的数据格式。 4. 模型拟合:在处理好的数据集上,利用线性回归算法进行模型拟合,得到回归方程。 5. 模型评估:通过误差平方和等指标对模型进行评估,判断其预测效果的好坏。 6. 应用预测:使用建立好的模型,输入新的数据特征,进行房价预测。 线性回归算法的优点是模型简单,易于理解和应用,适合于处理数量较少的数据,同时还可以提供较为准确的预测结果。但是线性回归也有其局限性,例如不能处理非线性数据,对异常值敏感等。因此,在实际应用中需要针对不同的数据模型选择合适的算法进行处理。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

lijiachang030718

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值