欧拉路径学习笔记

本文介绍了欧拉路径的概念,包括欧拉图的判定条件,并重点讲解了Hierholzer算法,这是一种求解欧拉路径的主流方法。此外,文章还通过CF36E和CF209C两道题目探讨了欧拉路径在实际问题中的应用,涉及奇点配对和连通块的处理策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Part 0: 一些无聊的定义

欧拉路径其实就是在一张图 G = ( V , E ) G=\left(V,E\right) G=(V,E) 中的特殊路径,它满足:

  • 经过 E E E 中的每条边各一次。

若这条路径的起点与终点是同一个点,则这条欧拉路径被称为欧拉回路

若这张图存在欧拉路径,则这张图被称为欧拉图

其实浅显一点,欧拉路径其实就是图上作一笔画问题得到的路径。

欧拉路径的存在条件(欧拉图的判定条件):

  • 此图的连通块数量为 1 1 1.
  • 若此图为无向图,则奇点个数为 0 0 0 2 2 2.
  • 若此图为有向图,则入度与出度不同且入度与出度仅相差 1 1 1 的点的个数为 0 0 0<
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值