P4909 Ski Lift G 题解

题解:

d p i dp_i dpi 为选取前 i i i 个点且选第 i i i 个点的答案,显然答案为 d p n dp_n dpn.

考虑转移,转移类似于 n 2 n^2 n2 的最长上升子序列:

d p i = min ⁡ j ∈ S d p j + 1 dp_i=\min_{j\in S}dp_j+1 dpi=jSmindpj+1

其中, S S S 为可以转移到 i i i j j j 的集合。

考虑可以转移到 i i i j j j 要满足什么条件。

首先,据题目所说, i i i j j j 的距离要不大于 k k k,即 j ≥ i − k j\geq i - k jik.

然后,还有一个限制条件,钢丝不能穿过山坡,转化为数学语言就是对于任意的 l l l 满足 j ≤ l ≤ i j\leq l\leq i jli,要满足 K i → j ≥ K l → j K_{i\to j}\geq K_{l\to j} KijKlj.

其中 K i → j K_{i\to j} Kij 表示连接 i i i j j j 两点的线段的斜率。

于是我们可以在每次转移从满足条件 1 1 1 的从大往小扫过去,统计斜率最小值,若斜率最小值为转移点 j j j 到被转移点 i i i 的斜率,则表明转移点 j j j 满足条件 2 2 2,即为可转移点。

于是我们可以在 O ( n k ) O(nk) O(nk) 的时间解决此题。

代码:

#include<bits/stdc++.h>
using namespace std;
const double eps = 1e-9;
const int N = 5005;
int f[N], n, k, h[N];
int main() {
//	freopen("lift.in", "r", stdin);
//	freopen("lift.out", "w", stdout);
	scanf("%d%d", &n, &k);
	for(int i = 1; i <= n; ++i) {
		scanf("%d", &h[i]);
	}
	for(int i = 0; i <= n; ++i) {
		f[i] = 1e9 + 11;
	}
	f[1] = 1;
	for(int i = 2; i <= n; ++i) {
		double minn = 1e9;
		int rg = max(1, i - k);
		for(int j = i - 1; j >= rg; --j) {
			double now = (h[i] - h[j]) * 1.0 / (i - j); //当前斜率
			minn = min(minn, now); //实时求斜率最小值
			if(fabs(now - minn) < eps) f[i] = min(f[i], f[j] + 1); //进行转移
		}
	}
	printf("%d", f[n]);
	return 0;
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值