题解:
设 d p i dp_i dpi 为选取前 i i i 个点且选第 i i i 个点的答案,显然答案为 d p n dp_n dpn.
考虑转移,转移类似于 n 2 n^2 n2 的最长上升子序列:
d p i = min j ∈ S d p j + 1 dp_i=\min_{j\in S}dp_j+1 dpi=j∈Smindpj+1
其中, S S S 为可以转移到 i i i 的 j j j 的集合。
考虑可以转移到 i i i 的 j j j 要满足什么条件。
首先,据题目所说, i i i 和 j j j 的距离要不大于 k k k,即 j ≥ i − k j\geq i - k j≥i−k.
然后,还有一个限制条件,钢丝不能穿过山坡,转化为数学语言就是对于任意的 l l l 满足 j ≤ l ≤ i j\leq l\leq i j≤l≤i,要满足 K i → j ≥ K l → j K_{i\to j}\geq K_{l\to j} Ki→j≥Kl→j.
其中 K i → j K_{i\to j} Ki→j 表示连接 i i i 和 j j j 两点的线段的斜率。
于是我们可以在每次转移从满足条件 1 1 1 的从大往小扫过去,统计斜率最小值,若斜率最小值为转移点 j j j 到被转移点 i i i 的斜率,则表明转移点 j j j 满足条件 2 2 2,即为可转移点。
于是我们可以在 O ( n k ) O(nk) O(nk) 的时间解决此题。
代码:
#include<bits/stdc++.h>
using namespace std;
const double eps = 1e-9;
const int N = 5005;
int f[N], n, k, h[N];
int main() {
// freopen("lift.in", "r", stdin);
// freopen("lift.out", "w", stdout);
scanf("%d%d", &n, &k);
for(int i = 1; i <= n; ++i) {
scanf("%d", &h[i]);
}
for(int i = 0; i <= n; ++i) {
f[i] = 1e9 + 11;
}
f[1] = 1;
for(int i = 2; i <= n; ++i) {
double minn = 1e9;
int rg = max(1, i - k);
for(int j = i - 1; j >= rg; --j) {
double now = (h[i] - h[j]) * 1.0 / (i - j); //当前斜率
minn = min(minn, now); //实时求斜率最小值
if(fabs(now - minn) < eps) f[i] = min(f[i], f[j] + 1); //进行转移
}
}
printf("%d", f[n]);
return 0;
}