摘要:本文系统阐述了扩散模型(Diffusion Models)的核心原理及其在图像生成和分子设计领域的前沿应用。作为生成式AI的重要分支,扩散模型通过逐步加噪和去噪过程实现高质量数据生成,相比GAN具有训练稳定性高、可解释性强等优势。文中详细解析了前向扩散过程、反向去噪过程、变分下界推导等关键技术,通过PyTorch实现完整的DDPM(去噪扩散概率模型)和Stable Diffusion框架,并在CIFAR-10数据集和药物分子设计任务中验证有效性。实验结果表明,基于Stable Diffusion 3.0的图像生成模型在FID评估中达到2.8的优异成绩,分子设计模型成功生成符合药物化学规则的新型分子结构。本文提供完整代码、训练可视化及工程优化方案,为相关领域研究人员和工程师提供可复用的技术框架。
文章目录
【深度学习常用算法】十一、扩散模型:从原理到Stable Diffusion的全面解析与实战
关键词
扩散模型;生成式AI;Stable D