【深度学习常用算法】十一、扩散模型:从原理到Stable Diffusion的全面解析与实战

摘要:本文系统阐述了扩散模型(Diffusion Models)的核心原理及其在图像生成和分子设计领域的前沿应用。作为生成式AI的重要分支,扩散模型通过逐步加噪和去噪过程实现高质量数据生成,相比GAN具有训练稳定性高、可解释性强等优势。文中详细解析了前向扩散过程、反向去噪过程、变分下界推导等关键技术,通过PyTorch实现完整的DDPM(去噪扩散概率模型)和Stable Diffusion框架,并在CIFAR-10数据集和药物分子设计任务中验证有效性。实验结果表明,基于Stable Diffusion 3.0的图像生成模型在FID评估中达到2.8的优异成绩,分子设计模型成功生成符合药物化学规则的新型分子结构。本文提供完整代码、训练可视化及工程优化方案,为相关领域研究人员和工程师提供可复用的技术框架。


在这里插入图片描述


【深度学习常用算法】十一、扩散模型:从原理到Stable Diffusion的全面解析与实战

关键词

扩散模型;生成式AI;Stable D

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI_DL_CODE

您的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值