烧脑的三门问题

关注我,持续分享逻辑思维&管理思维&面试题; 可提供大厂面试辅导、及定制化求职/在职/管理/架构辅导;

推荐专栏10天学会使用asp.net编程AI大模型,目前已完成所有内容。一顿烧烤不到的费用,让人能紧跟时代的浪潮。从普通网站,到公众号、小程序,再到AI大模型网站。干货满满。学成后可接项目赚外快,绝对划算。不仅学会如何编程,还将学会如何将AI技术应用到实际问题中,为您的职业生涯增添一笔宝贵的财富。

-------------------------------------正文----------------------------------------

节目现场有三扇关闭了的门,其中一扇的后面有辆跑车,而另外两扇门后面则各藏有一只山羊。 参赛者需要从中选择一扇门,如果参赛者选中后面有车的那扇门就可以赢得这辆跑车。

当参赛者选定了一扇门,但未去开启它的时候,节目主持人会开启剩下两扇门的其中一扇,露出其中一只山羊。

接下来参赛者会被问到:是否保持他的原来选择,还是转而选择剩下的那一道门?

参赛者要不要换门,从而赢得跑车的概率更大?

-------------------------------------答案----------------------------------------

此题出自玛丽莲·沃斯·莎凡特——吉尼斯认定的最高智商人类(IQ:228)。曾经引起非常广泛的讨论。先公布答案:换门赢的概率更大

这个答案由出题人莎凡特给出。但当时很多数学或科学研究机构,有的人甚至有博士学位,都表示不对。
但麻省理工的数学家和阿拉莫斯国家实验室的程序员都宣布,他们用计算机进行模拟实验的结果,都支持了莎凡特的答案。

我们直觉分析如下:
1.参赛者在做出最开始的决定时,对三扇门后面的事情一无所知,因此他选择正确的概率是1/3,这个非常直观,合乎直觉。
2.然后,主持人排除掉了一个错误答案(有羊的门),于是剩下的两扇门必然是一扇是羊,一扇是跑车,那么此时无论选择哪一扇门,胜率都是1/2,依然合乎直觉。
3.所以感觉上,参赛者换不换都无必要,获胜概率均为1/2。

但上面的直觉忽略了一点:主持人的选择并不是一个纯随机事件。我们考虑所有场景:
1.参赛者选择汽车,主持人选择山羊甲,转换失败
2.参赛者选择山羊甲,主持人选择山羊乙,转换成功
3.参赛者选择山羊乙,主持人选择山羊甲,转换成功

有人说,第1点的时候,主持人有可能选择山羊乙,这种场景没考虑。但我们假设2种情况:
一、主持人也不知道山羊在哪里,只是碰巧开了一扇山羊门。此时,主持人可能选山羊甲或山羊乙。这是2种情况。如果节目中全随机,在第1种情况时,是2次操作,并且在第2,3种情况时,如果主持人选到汽车的门,则作废。这种情况下,概率才是一样。
二、主持人知道山羊在哪。此时山羊甲和山羊乙对主持人来说,不是两个场景。对主持人来说,山羊甲乙没啥区别。

还不清楚的话,我们可以借助数学工具——贝叶斯公式,可以很简单的解决这个问题。
我们用事件A代表你第一次选择的门后是跑车,B代表主持人翻开的门后是山羊。那么已知B的情况下,A发生的条件概率 P{A|B} 用贝叶斯公式可得:P{A}P{B|A} /P{B};

显然,第一次选对的概率,即 P{A}=1/3,无需赘述。但是由于不知道主持人的行为,所以无法计算 P{B|A} 和 P{B}。
那么我们具体分析:因为主持人知道门后对应的东西,所以只选择开启有羊的门,于是
主持人一定选择山羊,事件 B 一定发生:P{B|A} = 1
主持人一定选择山羊,事件 B 一定发生:P{B} = 1
那么 P{A|B} = 1/3,所以不换的胜率是1/3,因此一定要换。

那么如果改变条件,主持人并不知道门后有什么东西,那么:P{B|A} = 1
而 P{B} = 1/3 * 1 + 2/3 * 1/2 = 2/3,得到 P{A|B} = 1/2 。
也就是是说,这种情况下才是换与不换都无所谓的1/2,而显然要求的主持人不知道门后有什么东西,和游戏的限制条件不符合。也就是说1/2肯定是错误的。

感兴趣的同学辛苦 关注/点赞 ,持续分享逻辑、算法、管理、技术、人工智能相关的文章。

有意找工作的同学,请参考博主的原创:《面试官心得--面试前应该如何准备》,《面试官心得--面试时如何进行自我介绍》, 《做好面试准备,迎接2024金三银四》。
或关注博主免费专栏【程序员宝典--常用代码分享】里面有大量面试涉及的算法或数据结构编程题。

博主其它经典原创:《管理心得--如何高效进行跨部门合作》,《技术心得--如何成为优秀的架构师》、《管理心得--如何成为优秀的架构师》、《管理心理--程序员如何选择职业赛道》,及
C#实例:SQL如何添加数据》,《C#实战分享--爬虫的基础原理及实现》欢迎大家阅读。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

借雨醉东风

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值