from sklearn.ensemble import RandomForestClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.naive_bayes import GaussianNB
from sklearn.tree import DecisionTreeClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import auc,roc_curve
from sklearn.svm import SVC
from sklearn.metrics import confusion_matrix
from sklearn import metrics
models = [('RF', RandomForestClassifier(max_depth=3, random_state=0)),
('DT', DecisionTreeClassifier(random_state=0)),
('LR', LogisticRegression()),
('GaussianNB', GaussianNB()),
('SVC',SVC(probability=True)),
('KNN',KNeighborsClassifier())
]
def net_benefit_model(y_test,y_prob,thresh_group):
total = y_test.shape[0]
net_model = np.array([])
for thresh in thresh_group:
y_pred
基于python绘制多种机器学习训练模型的临床决策曲线
于 2024-01-07 12:38:00 首次发布