基于python绘制多种机器学习训练模型的临床决策曲线

本文介绍如何使用Python绘制多种机器学习模型的临床决策曲线,揭示不同模型在不同阈值下的性能,帮助评估模型在实际临床决策中的价值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

from sklearn.ensemble import RandomForestClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.naive_bayes import GaussianNB
from sklearn.tree import DecisionTreeClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import auc,roc_curve
from sklearn.svm import SVC
from sklearn.metrics import confusion_matrix
from sklearn import metrics

models = [('RF', RandomForestClassifier(max_depth=3, random_state=0)),
        ('DT', DecisionTreeClassifier(random_state=0)),
        ('LR', LogisticRegression()),
        ('GaussianNB', GaussianNB()),
        ('SVC',SVC(probability=True)),
        ('KNN',KNeighborsClassifier())
        ]

def net_benefit_model(y_test,y_prob,thresh_group):
    total = y_test.shape[0]
    net_model = np.array([])
    for thresh in thresh_group:
        y_pred 
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值