目录
目录
💥1 概述
该文提出一种新的时频分析(TFA)方法,称为非线性STFT(NLSTFT)。一种有效的TFA方法,该方法可以用时变瞬时频率对信号进行记录。实际上,传统的TFA方法在处理此类信号时受到限制。
结论
对于非线性信号的瞬时频率估计,传统的STFT可能不足够精确。通过采用变窗长、重分配方法、同步压缩变换、非线性滤波和希尔伯特变换或基于小波变换的方法,可以显著提高瞬时频率估计的准确性和分辨率
-
非线性STFT(Short-Time Fourier Transform)是一种在时频分析中常用的方法,它可以将信号在时间和频率上进行局部分析。非线性STFT在瞬时频率估计中的应用主要是用于分析非线性系统中的信号。
在非线性系统中,信号的频率可能会随时间变化,这就需要对信号的瞬时频率进行估计。传统的线性STFT方法在非线性系统中的应用效果较差,因为它假设信号的频率是恒定的,无法准确地捕捉到频率的变化。
非线性STFT通过引入非线性变换,可以更好地适应非线性系统中信号频率的变化。常用的非线性变换方法包括Wigner-Ville分布、Cohen类分布和S-method等。这些方法可以通过对信号进行时频分析,得到信号在时间和频率上的局部特征,从而实现对信号瞬时频率的估计。
非线性STFT在瞬时频率估计中的应用可以帮助我们更好地理解非线性系统中信号的特性。例如,在声音信号处理中,非线性STFT可以用于分析声音的共振特性和谐波结构,从而实现声音的合成和变换。在振动信号分析中,非线性STFT可以用于检测和诊断机械故障,通过分析信号的瞬时频率变化来判断机械系统的工作状态。
非线性STFT在瞬时频率估计中的应用可以帮助我们更好地理解非线性系统中信号的特性,从而实现对信号的分析和处理。
-
在信号处理中,短时傅里叶变换(Short-Time Fourier Transform, STFT)是一种常用的时频分析方法,用于分析非平稳信号随时间变化的频率内容。然而,标准的STFT在处理具有显著非线性特性的信号时可能不够精确,特别是在估计瞬时频率方面。为了更准确地估计非线性信号的瞬时频率,可以采用一些改进的方法或结合其他技术。
非线性STFT的概念
非线性STFT并不是STFT的一个直接变种,因为STFT本身是基于线性变换(即傅里叶变换)的。但是,我们可以通过在STFT的基础上应用非线性处理或结合其他非线性技术来改进对非线性信号的分析。
瞬时频率估计的挑战
瞬时频率是信号在某一时刻的频率值,对于非线性信号,其频率可能随时间快速变化,且可能包含多个频率分量。传统的STFT由于其在时间分辨率和频率分辨率之间的权衡(由窗函数决定),可能无法精确捕捉这些快速变化。
改进方法
-
变窗长STFT:
使用可变的窗长可以改善STFT的时间分辨率。在信号变化快的部分使用较短的窗,而在变化慢的部分使用较长的窗,可以更有效地捕捉瞬时频率的变化。 -
重分配方法(Reassignment Method):
重分配方法通过重新分配STFT的频谱能量到其局部时频中心的估计位置,来提高时频表示的分辨率。这种方法可以显著减少频谱的模糊效应,从而更准确地估计瞬时频率。 -
同步压缩变换(Synchrosqueezing Transform):
同步压缩变换是重分配方法的一种特殊形式,它进一步压缩了时频表示中的能量分布,使得频率估计更加集中和准确。这种方法特别适用于具有明显频率调制特性的信号。 -
非线性滤波和希尔伯特变换:
通过非线性滤波(如中值滤波、维纳滤波等)预处理信号,可以减少噪声和干扰,然后应用希尔伯特变换来估计信号的瞬时相位,进而计算瞬时频率。 -
基于小波变换的方法:
小波变换提供了另一种时频分析方法,它可以通过选择适当的小波基和分解层数来更好地适应非线性信号的特性。小波变换的连续小波变换(CWT)版本尤其适用于瞬时频率的估计。
📚2 运行结果
2.1 算例1
2.2 算例2
NLSTFT子函数代码:
function tfr = NLSTFT(x,c,fs,hlength);
% Non-linear Short time Fourier transform.
% x : Signal.
% c : First order derivative of signal IF.
% fs : Sample Frequency .
% hlength: Length of window function.
% tfr : Time-Frequency Representation.
%
% This program is free software; you can redistribute it and/or modify
% it according to your requirement.
[xrow,xcol] = size(x);
if (nargin < 3),
error('At least 3 parameter is required');
end;
Siglength=xrow;
if (nargin < 4),
hlength=floor(Siglength/4);
end;
hlength=hlength+1-rem(hlength,2);
h = tftb_window(hlength);
%t=1:xrow;
%[trow,tcol] = size(t);
[hrow,hcol]=size(h); Lh=(hrow-1)/2;
h=h/norm(h);
if (xcol~=1),
error('X must have one column');
end;
N=xrow;
t=1:xrow;
[trow,tcol] = size(t);
tt=(1:N)/fs;
tfr= zeros (N,tcol) ;
for icol=1:tcol,
ti= t(icol); tau=-min([round(N/2)-1,Lh,ti-1]):min([round(N/2)-1,Lh,xrow-ti]);
indices= rem(N+tau,N)+1;
rSig = x(ti+tau,1);
%rSig = Hilbert(real(rSig));
a=Lh+1+tau;
tfr(indices,icol)=rSig.*conj(h(Lh+1+tau)).*exp(j * 2.0 * pi * (c(icol)/2) * (tt(ti+tau)-tt(icol)).^2)';
end;
tfr=fft(tfr);
🎉3 参考文献
部分理论来源于网络,如有侵权请联系删除。
[1]YuGang. Shandong University A Non-linear STFT With Application to Estimation of Instantaneous Frequency.
[2]尉宇,孙德宝,郑继刚.基于FrFT优化窗的STFT及非线性调频信号瞬时频率估计[J].宇航学报, 2005, 26(2):6.DOI:10.3321/j.issn:1000-1328.2005.02.020.
[3]张国勤.时频分析在信号瞬时频率估计中的应用[J].自动化与仪器仪表, 2015(7):3.DOI:10.14016/j.cnki.1001-9227.2015.07.183.