💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
⛳️赠与读者
👨💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能解答你胸中升起的一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。
或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎
💥1 概述
一、引言
随着无线通信技术的快速发展,超大规模多输入多输出(XL-MIMO)技术逐渐成为提高无线通信系统性能的关键技术。XL-MIMO通过在基站和用户之间部署大量天线,提高了系统的空间分辨率和频谱效率。然而,在XL-MIMO系统中,信道估计问题成为影响系统性能的关键因素。特别是在视线(Line-of-Sight,LoS)通信场景下,如何利用几何先验信息进行高效的信道估计,是本文研究的重点。
二、XL-MIMO系统基本原理与特点
XL-MIMO系统利用大规模天线阵列实现信号的传输和接收。其基本原理包括信号的发射、传播和接收等过程。XL-MIMO系统的特点包括频谱资源丰富、传输速率高、空间分辨率高、抗干扰能力强等。在LoS通信场景下,信号主要通过直射路径进行传输,因此信道特性相对简单,但仍然需要精确的信道估计来保证通信质量。
三、几何先验信息在信道估计中的应用
在LoS通信场景下,可以利用发射端和接收端之间的几何关系作为先验信息,进行信道估计。这种几何先验信息包括发射端和接收端的位置、天线的方向等。通过利用这些先验信息,可以构建更准确的信道模型,从而提高信道估计的准确性。
四、基于几何先验的信道估计方法
- 基于角度和距离的信道估计
在LoS场景下,信号主要通过直射路径进行传输。因此,可以利用发射端和接收端之间的角度和距离信息,构建信道模型。这种方法通常基于球面波前假设,考虑信号的传播路径和天线阵列的几何布局,从而得到信道矩阵的估计值。
- 基于特征值分解的信道估计
另一种方法是利用信道矩阵的特征值分解(EVD)进行信道估计。通过利用几何先验信息,可以推导出信道矩阵的特征向量和特征值的一般形式。然后,利用这些特征向量和特征值构建字典,通过稀疏表示的方法进行信道估计。这种方法能够减少基带样本量和字典大小,提高信道估计的效率。
五、仿真实验与结果分析
为了验证基于几何先验的信道估计方法的有效性,我们进行了仿真实验。实验结果表明,在LoS通信场景下,利用几何先验信息进行信道估计可以显著提高信道估计的准确性。与传统的信道估计方法相比,基于几何先验的方法在降低计算复杂度和提高估计精度方面表现出色。
六、结论与展望
本文研究了利用几何先验进行视线XL-MIMO通信的信道估计问题。通过利用发射端和接收端之间的几何关系作为先验信息,我们提出了基于角度和距离以及基于特征值分解的信道估计方法。仿真实验结果表明,这些方法在LoS通信场景下具有显著的优势。未来,我们将继续探索更高效、更准确的信道估计方法,以适应不同场景下的通信需求。同时,我们也将关注XL-MIMO技术在其他领域的应用,如物联网、车联网等,为无线通信技术的发展做出更大的贡献。
📚2 运行结果
部分代码:
%Calculate the sparsness of H_a
K = sparsityanalysis(Ha);
[nonzerorindex,nonzerocindex] = indices_of_the_maximum_K_entries_in_A(Ha,K);
%Eliminating the power leakage effect detailed in \cite{gxfICC}
Ha2=zeros(size(Ha));
Ha2(nonzerorindex,nonzerocindex)=Ha(nonzerorindex,nonzerocindex);
Ha=Ha2;
%calculate Eq. (13)
[xindex,yindex] = calculate_eq_13(NS,varphi,delta,lambda);
geshu=length(xindex);
%Calculate S(varphi)
column_spread=round(NS/2*wavenumber_leakage/k);
rxiabiao=[];
cxiabiao=[];
for u = 1:NS
for v = -column_spread:column_spread
if yindex(u) + v <= NS && yindex(u) + v >= 1
rxiabiao=[rxiabiao,u];
cxiabiao=[cxiabiao,yindex(u)+v];
end
end
end
%Generate Y C X
[Y,RF,X] = Generatepilot(H,NRF,P);
Y=AWGN(Y,SNR);
%For ease of expression
A=RF*WR;
B=WS*X;
% G0 = GCCS_2D(Y,A,B,K);
% NMSE_GCCS=[NMSE_GCCS,norm(G0-Ha,'F')^2/norm(Ha,'F')^2];
G1 = OMP_2D_restricted_support(Y,A,B,min(K,geshu),rxiabiao,cxiabiao);
NMSE_OMP_restricted=[NMSE_OMP_restricted,norm(G1-Ha,'F')^2/norm(Ha,'F')^2];
% G2 = LS_2D_restricted_support(Y,A,B,nonzerorindex,nonzerocindex);
% NMSE_lspro=[NMSE_lspro,norm(G2-Ha,'F')^2/norm(Ha,'F')^2];
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。(文章内容仅供参考,具体效果以运行结果为准)
[1]杨佳攀,陈为,艾渤.基于深度展开神经网络的融合感知通信场景信道估计[J].移动通信, 2023, 47(9):64-70.
[2]袁伟娜.基于新型训练序列的多天线移动通信信道估计[D].西南交通大学,2007.
[3]李祥森.基于双IRS辅助的毫米波MIMO通信信道估计[J].无线电通信技术, 2022(048-002).
[4]赵悠悠.航空通信系统基于先验信息的信道估计算法研究[D].郑州大学[2025-01-04].
🌈4 Matlab代码实现
资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取