YOLO-vscode的安装使用

配置步骤

将yolov5-7.0使用vscode打开后

step1:扩展

点击左侧栏选择扩展选项

必须要扩展的选择

1.Chinese(汉化包)

2.Code Runner(方便的运行代码,提高编程效率)

3.Python(安装插件后可以在vscode上运行python代码)

step2:进入创建好的虚拟环境(进行检测)

1.通过终端新建终端

2.然后进入我们创建的环境

3.打开detect.py(检测页面)

4.选择解释器yolov5

5.单机运行python文件(运行时必须在yolov5环境中进行)

6.在runs中查看运行结果(终端处也会打印检测结果)

在detect.py文件页面中

weights:检测目标时使用的模型,此处使用的是yolov5s.pt

source:被检测的对象

data:用于指定数据集的配置文件路径。如果用户在命令行中没有提供该参数的值,则使用默认值ROOT / 'data/coco128.yaml'。这个配置文件包含了数据集的相关信息,如类别名称、图像路径等。

imgsz:代表检测使用的图片像素大小,此处设置是640(可以更改且必须为32的倍数)

### 配置YOLOv8开发环境 #### 创建Python虚拟环境 为了确保项目的依赖项不会影响其他项目,在开始之前应该先创建一个新的 Python 虚拟环境。可以使用 Conda 来管理这个环境: ```bash conda create -n yolo_v8 python=3.8 ``` 激活新创建的环境以便后续操作都在此环境中执行[^1]。 #### 安装必要的库和工具 进入已经准备好的工作目录并安装所需的 Python 库,特别是 OpenCV 和 PyTorch 这些对于计算机视觉任务非常重要的包。可以通过 pip 或者 conda 的方式来完成这些软件包的安装。如果是在 Mac 上,则需要注意一些特定于平台的问题,比如可能需要通过 Homebrew 安装某些依赖项以支持 Opencv 的正常运行[^2]。 #### 设置VSCode编译任务 为了让 Visual Studio Code (VSCode) 支持 C++ 编程以及方便地构建项目,可以在 `.vscode` 文件夹内定义 `tasks.json` 文件用于描述如何调用 cmake 构建命令。这使得开发者可以直接从编辑器内部触发构建过程而无需切换到终端窗口去手动输入指令。 下面是一个简单的例子展示怎样设置这样的 JSON 文件: ```json { "version": "2.0.0", "tasks": [ { "label": "CMake Build", "type": "shell", "command": "cmake", "args": [ "--build", "./build" ], "group": { "kind": "build", "isDefault": true }, "problemMatcher": ["$gcc"], "detail": "Generated task by CMake Tools." } ] } ``` #### 解决常见错误提示 当尝试加载预训练模型时可能会遇到 `'Upsample' object has no attribute 'recompute_scale_factor'` 错误消息。这个问题通常发生在不同版本之间的兼容性上;因此建议确认所使用的 PyTorch 版本与官方文档推荐的一致,并按照最新指南调整代码中的参数设定[^3]。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值