之前写过一篇YOLOv8在无显卡的电脑上安装配置全流程(小白CPU版),里面带大家配好了整个CPU训练的环境,
这篇文章我们来介绍如何使用 YOLOv8
训练分割数据集,并在Vscode上面进行模型训练。
这里我会讲解分割数据集的格式,就不带大家标注了,因为标注分割数据集真的太麻烦了。
1. 数据格式
我们先看下官方给我们提供的分割数据集示例,下载地址在这里:https://ultralytics.com/assets/coco8-seg.zip
打开后是这样子的
先带大家读一下README.md文件,官方这个文件是英文的,这里给大家提供中文参考:
Ultralytics COCO8-seg 数据集
Ultralytics COCO8-seg 是一个小型但多才多艺的实例分割数据集,由 COCO train 2017 集的前 8 张图像组成,其中 4 张用于训练,4 张用于验证。
该数据集非常适用于测试和调试分割模型,或者尝试新的检测方法。
有了 8 张图像,它足够小,易于管理,同时又足够多样,可以用于测试训练流程是否存在错误,并在训练更大数据集之前作为健全性检查。
此数据集旨在与 Ultralytics YOLOv8 一起使用。
数据集的结构就是下面这样的,图片没有什么可说的,主要说下标签文件,
coco8-seg
├─images
│ ├─train
│ └─val
└─labels
├─train
└─val
2. 配置环境
代码地址:https://github.com/ultralytics/ultralytics
首先我们要下载源码,如果你会使用 git
工具,请直接拉取最新的代码。
git clone https://github.com/ultralytics/ultralytics.git
环境的配置,不建议使用以下指令:(因为网上新版本教程大多数都用这个指令)
新手不懂的话,会遇到很多坑!
pip install ultralytics <