自制简易断点检测电路

    要想电线中是哪里断开了,其实自制一个检测器也不难,而且只需要几个元器件。

    检测器的基本原理就是,检测哪里的磁场强,哪里的电磁辐射大,是不是有点像特斯拉线圈?

    来看一下效果:

    当线圈靠近火线,LED亮,如下图所示。

    同理,如果从火线插孔引出一条导线,如下图,沿着导线移动线圈时,LED也是亮的。如果等突然灭了,就说明此处断路了。

制作材料与电路分析

制作材料

  • 3个三极管,型号S8050

  • 1个LED灯

  • 两节常用的7号干电池

电路原理

    上图这个电路是“三级直接耦合式小信号放大器”。

    家用交流电,变化的电场产生磁场,感应线圈L在磁场中感应出微弱的电流,通过“三级直接耦合式小信号放大器”放大,点亮LED灯。

    线圈L的绕线方式、改变三极管放大级数都会影响到检测器的灵敏度,要根据实际使用的效果做出调整。

### 使用 OpenCV 实现断点检测 在图像处理领域,断点检测指的是识别物体轮廓中的不连续点或断裂位置。通过使用OpenCV库可以有效地完成这一任务。下面介绍一种利用边缘检测和形态学操作相结合的方式来进行断点检测。 #### 边缘检测与预处理 为了更好地捕捉到可能存在的断点,在实际处理之前先要对原始图片做一定的预处理工作。这一步骤主要包括转换成灰度模式、降噪以及应用Canny算子来获取清晰的边界信息[^1]: ```python import cv2 as cv import numpy as np def preprocess_image(img_path): img = cv.imread(img_path) gray_img = cv.cvtColor(img, cv.COLOR_BGR2GRAY) # 应用高斯模糊减少噪声影响 blurred_gray_img = cv.GaussianBlur(gray_img, (5, 5), 0) # Canny算法用于提取边缘特征 edges = cv.Canny(blurred_gray_img, threshold1=30, threshold2=90) return edges ``` #### 形态学操作寻找断点 经过上述预处理之后得到的是二值化的边缘图谱,此时可以通过闭运算填充细小缝隙并尝试恢复被切断的部分;再通过对结果取反并与原图相减即可突出显示那些未连接上的端点即所谓的“断点”。具体做法如下所示[^3]: ```python def find_breakpoints(edges): kernel_size = (7, 7) struct_element = cv.getStructuringElement(cv.MORPH_ELLIPSE, kernel_size) closed_edges = cv.morphologyEx(edges, cv.MORPH_CLOSE, struct_element) inv_closed_edges = cv.bitwise_not(closed_edges) breakpoints = cv.subtract(inv_closed_edges, cv.bitwise_not(edges)) return breakpoints ``` 最后展示处理后的图像以直观查看所找到的所有潜在断点: ```python if __name__ == "__main__": edge_map = preprocess_image('path_to_your_image') breakpoint_mask = find_breakpoints(edge_map) cv.imshow("Detected Break Points", breakpoint_mask) cv.waitKey(0) cv.destroyAllWindows() ``` 这种方法能够有效定位出给定图形中存在的间断处,并适用于多种应用场景下的缺陷分析任务。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值