目录
int kruskal()
{
sort(edges, edges+m);
for (int i = 1; i <= n; i ++ ) p[i]=i; //初始化并查集
int res=0, cnt=0; //res存最小生成树的总权值 cnt存已选边数
for (int i = 0; i < m; i ++ )
{
int a=edges[i].a, b=edges[i].b, w=edges[i].w;
a=find(a), b=find(b);
if (a != b)
{
p[a]=b; //a b合并
res+=w;
cnt++;
}
}
if (cnt < n-1) return INF;
return res;
}
一、859. Kruskal算法求最小生成树
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
const int N = 100010, M = 200010, INF = 0x3f3f3f3f;
int n, m;
int p[N];
struct Edge
{
int a, b, w;
bool operator< (const Edge &W)const //通过边长进行排序
{
return w < W.w;
}
}edges[M];
int find(int x)
{
if (p[x] != x) p[x] = find(p[x]);
return p[x];
}
int kruskal()
{
sort(edges, edges + m);
for (int i = 1; i <= n; i ++ ) p[i] = i; //初始化并查集
int res = 0, cnt = 0; //res存最小生成树的总权值 cnt存已选边数
for (int i = 0; i < m; i ++ )
{
int a = edges[i].a, b = edges[i].b, w = edges[i].w;
a = find(a), b = find(b);
if (a != b)
{
p[a] = b; //a b合并
res += w;
cnt ++;
}
}
if (cnt < n - 1) return INF;
return res;
}
int main()
{
scanf("%d%d", &n, &m);
for (int i = 0; i < m; i ++ )
{
int a, b, w;
scanf("%d%d%d", &a, &b, &w);
edges[i] = {a, b, w};
}
int t = kruskal();
if (t == INF) puts("impossible");
else cout<<t;
return 0;
}