【Acwing 周赛#89】AcWing 4805. 加减乘 - dp

目录

4803. 满足的数 - 简单ac

4804. 构造矩阵 - 暴力ac

4805. 加减乘 - dp


4803. 满足的数 - 简单ac

import java.util.*;

class Main
{
    public static void main(String[] args)
    {
        Scanner sc=new Scanner(System.in);
        int n=sc.nextInt();
        int[] a=new int[n];
        int sum=0;
        for(int i=0;i<n;i++)
        {
            a[i]=sc.nextInt();
            sum+=a[i];
        }
        int res=0;
        for(int i=1;i<=5;i++)
        {
            if((sum+i)%(n+1)!=1) res++;
        }
        System.out.print(res);
    }
}

4804. 构造矩阵 - 暴力ac

  • 因为0所在的行和列必须全为0
  • 所以我们先把矩阵里为0的,它所在的行和列都置为0
  • 然后检测原矩阵里每个1,检查它所在行和列是否全为0
  • (如果所在行或列中存在1,则该1检测成功,res++)
  • 如果res==原矩阵中1的个数,说明矩阵里所有1都满足情况,则可以构造
  • 否则不能构造
import java.util.*;

class Main
{
    public static void main(String[] args)
    {
        Scanner sc=new Scanner(System.in);
        int m=sc.nextInt(),n=sc.nextInt();
        int[][] a=new int[m][n];
        int[][] b=new int[m][n];
        int cnt=0;
        for(int i=0;i<m;i++)
            for(int j=0;j<n;j++) 
            {
                a[i][j]=sc.nextInt();
                if(a[i][j]==1) cnt++;
                b[i][j]=a[i][j];
            }

        for(int i=0;i<m;i++)
            for(int j=0;j<n;j++)
            {
                if(a[i][j]==0)
                {
                    for(int k=0;k<n;k++) b[i][k]=0;
                    for(int k=0;k<m;k++) b[k][j]=0;
                }
            }
        int res=0;
        for(int i=0;i<m;i++)
        {
            for(int j=0;j<n;j++)
            {
                boolean f=false;
                if(a[i][j]==1)
                {
                    for(int k=0;k<m;k++) if(b[k][j]==1) {f=true;break;}
                    for(int k=0;k<n;k++) if(b[i][k]==1) {f=true;break;}
                    if(f) res++;
                }
            }
        }
        if(cnt==res) 
        {
            System.out.println("YES");
            for(int i=0;i<m;i++)
            {
                for(int j=0;j<n;j++)
                    System.out.print(b[i][j]+" ");
                System.out.println();
            }
        }
        else System.out.print("NO");
        
    }
}

4805. 加减乘 - dp

4805. 加减乘 - AcWing题库

性质一:加减操作不能连续

+了再-,等于没操作,还花了代价,并不最优解

性质二:加法不能连续

因为加若干1,代价不如先加一再除

f[i] 为从i到0所花费的最小代价

  • 若i为偶数,则min(一步减法,一步除法)
  • 若i为奇数,则min(一步减法,一步加法+一步除法)

\left\{\begin{matrix} f[i]=min(f[i-1]+x,f[ \frac{i}{2} ]+y) \\ \\ \ f[i]=min(f[i-1]+x,f[\frac{i+1}{2} ]+x+y) \end{matrix}\right.

import java.util.*;

class Main
{
    static int N=10000010;
    static long[] f=new long[N];
    
    public static void main(String[] args)
    {
        Scanner sc=new Scanner(System.in);
        int n=sc.nextInt(),x=sc.nextInt(),y=sc.nextInt();
        Arrays.fill(f,0x3f3f3f3f);
        f[0]=0; //从0到0最小代价为0
        for(int i=1;i<=n;i++)
        {
            if(i%2==0) f[i]=Math.min(f[i-1]+x,f[i/2]+y);
            else f[i]=Math.min(f[i-1]+x,f[(i+1)/2]+x+y);
        }
        
        System.out.print(f[n]);
        
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值