AcWing数学知识

1. 质数

试除法判断质数 O(sqrt(n))
bool is_prime(int n) {
    if(n < 2) return false;
    for(int i = 2; i <= n / i; i ++)
        if(n % i == 0)
        return false;
    return true;
}
试除法分解质因数 O(sqrt(n))
void divide(int x) {
	for(int i = 2; i <= x / i; i ++) {
	    if(x % i == 0) {
			int s = 0;
			while(x % i == 0) {
				x /= i;
				s ++;
			}
			cout << i << ' ' << s << endl;
	    }
	}    
	if(x > 1) cout << x << ' ' << 1 << endl;
	puts("");
}
朴素筛法求质数

预处理1 ~ n 时间复杂度O(nlogn),每一次查询的时间复杂度是O(1)

int primes[N], cnt;
bool st[N];

void get_primes(int n) {
	for(int i = 2; i <= n; i ++) {
		primes[cnt ++] = i;
		for(int j = i; j <= n; j += i) {
			st[j] = true;
		}
	}
}
埃氏筛法求质数

预处理1 ~ n 时间复杂度O(nloglogn),近似O(n),每一次查询的时间复杂度是O(1)

int primes[N], cnt;
bool st[N];

void get_primes(int n) {
	for(int i = 2; i <= n; i ++) {
		if(st[i]) continue;
		primes[cnt ++] = i;
		for(int j = i; j <= n; j += i) {
			st[j] = true;
		}
	}
}
线性筛法求质数

预处理1 ~ n 时间复杂度O(n),每一次查询的时间复杂度是O(1)
n只会被最小质因子筛掉

int primes[N], cnt;//primes存储已经发现的素数,处理到i时,把小于等于i的数都扔到数组里
bool st[N];

void get_primes(int n) {
	for(int i = 2; i <= n; i ++) {
		if(!st[i]) primes[cnt ++] = i;
		for(int j = 0; primes[j] <= n / i; j ++) {
			st[primes[j] * i] = true;
			if(i % primes[j] == 0) break;//加上会变成线性的神奇优化
		}
	}
}

2. 约数

试除法求所有约数

vector<int> get_divisors(int x) {
    vector<int> res;
    for (int i = 1; i <= x / i; i ++ )
        if (x % i == 0) {
            res.push_back(i);
            if (i != x / i) res.push_back(x / i);
        }
    sort(res.begin(), res.end());
    return res;
}

约数个数和约数之和

如果 N = p1^c1 * p2^c2 * ... *pk^ck
约数个数: (c1 + 1) * (c2 + 1) * ... * (ck + 1)
约数之和: (p1^0 + p1^1 + ... + p1^c1) * ... * (pk^0 + pk^1 + ... + pk^ck)
  • 约数个数

给定 n个正整数 ai,请你输出这些数的乘积的约数个数,答案对 10^9+7 取模。

输入格式

第一行包含整数 n。

接下来 n行,每行包含一个整数 ai。

输出格式

输出一个整数,表示所给正整数的乘积的约数个数,答案需对 10^9+7 取模。

//分别分解每个因数的质因子,再把它们乘起来
const int mod = 1e9 + 7;

int main() {
    int n;
    cin >> n;
    
    unordered_map<int, int> primes; //哈希表存储所有底数和指数
    while(n --) {
        int x;
        cin >> x;
        
        for(int i = 2; i <= x / i; i ++)
            while(x % i == 0) {
                x /= i;
                primes[i] ++;//i的质因数的质数加一
            }
            
        if(x > 1) primes[x] ++;
    }
    
    ll res = 1;
    for(auto prime : primes) res = res * (prime.second + 1) % mod;
    
    cout << res << endl;
    
    return 0;
}
  • 最大公约数和最小公倍数
int gcd(int a,int b) {
    return b?gcd(b,a%b):a;
}

int lcm(int a,int b) {
    return a/gcd(a,b)*b;
}

3. 欧拉函数

  • 欧拉函数

int main() {
    int n;
    cin >> n;
    
    while(n --) {
        int a;
        cin >> a;
        
        int res = a;
        for(int i = 2; i<= a / i; i ++) {
            if(a % i == 0) { //i是a的质因子
                res = res / i * (i - 1);//等价res = res * (1 - 1 / i) 替换原因:不能有小数
                while(a % i == 0) a /= i;
            }
        }
        
        if(a > 1) res = res / a * (a - 1);
        
        cout << res << endl;
    }
    
    return 0;
}
  • 筛法求欧拉函数

给定一个正整数 n,求 1∼n 中每个数的欧拉函数之和。

输入格式

共一行,包含一个整数 n。

输出格式

共一行,包含一个整数,表示 1∼n中每个数的欧拉函数之和。

int primes[N], cnt;
int phi[N];
bool st[N];

LL get_eulers(int n) {
    phi[1] = 1;
    for(int i = 2; i <= n; i ++) {
        if(!st[i]) { //当前数没用被筛过,此数为质数
            primes[cnt ++] = i;
            phi[i] = i - 1;//质数1~i-1所有数都互质
        }
        
        for(int j = 0; primes[j] <= n / i; j ++) {
            st[primes[j] * i] = true;
            if(i % primes[j] == 0) {
                phi[primes[j] * i] = phi[i] * primes[j] ;
                break;
            }
            phi[primes[j] * i] = phi[i] * (primes[j] - 1);
        }
    }
    
    LL res = 0;
    for(int i = 1; i <= n; i ++) res += phi[i];
    
    return res;
}

int main()
{
    int n;
    cin >> n;
    cout << get_eulers(n) << endl;
    
    return 0;
}

4. 快速幂

每一次询问的时间复杂度`O(logn)

作用:以log的速度求出某个数的n次方
原理:2 ^ 18 -> 4 ^ 8 * 4 -> 16 ^ 4 * 4 -> 256 ^ 2 * 4
LL qmi(LL m, int k, int p) {
    LL res = 1;
    while (k) {
        if (k & 1) {
            res = res * m % p;
            
        }
        m = m * m % p;
        k >>= 1;
    }
    return res;
}
  • 快速幂求逆元

int qmi(LL a, int b, int p) {
    int res = 1;
    while (b) {
        if (b & 1) res = res * a % p;
        b >>= 1;
        a = a * a % p;
    }
    
    return res;
}

int main() {
    int T;
    cin >> T;
    while (T -- ) {
        int a, p;
        cin >> a >> p;
        
        int res = qmi(a, p - 2, p);
        if (a % p) cout << res << endl;
        else cout << "impossible" << endl;
    }
    
    return 0;
}
其他情况

amod固定,b的范围不大(<le7),可以预处理a的所有次方,预处理的时间复杂度O(n),每一次询问O(1)

  • a^b

求 a 的 b 次方对 p 取模的值。

输入格式

三个整数 a,b,p,在同一行用空格隔开。

输出格式

输出一个整数,表示a^b mod p的值。

LL qmi(LL a, LL b, LL p) {
    LL res = 1 % p;
    while (b) {
        if (b & 1) res = res * a % p;
        b >>= 1;
        a = a * a % p;
    }
    return res;
}

int main() {
    LL a, b, p;
    cin >> a >> b >> p;
    cout << qmi(a, b, p) << endl;
    
    return 0;
}

5. 拓展欧几里得算法

  • 扩展欧几里得算法

给定 n 对正整数 ai,bi,对于每对数,求出一组 xi,yi,使其满足 ai×xi+bi×yi=gcd(ai,bi))。

输入格式

第一行包含整数 n。

接下来 n 行,每行包含两个整数 ai,bi。

输出格式

输出共 n 行,对于每组 ai,bi,求出一组满足条件的 xi,yi,每组结果占一行。

本题答案不唯一,输出任意满足条件的 xi,yi 均可。

int exgcd(int a, int b, int &x, int &y) {
    if (!b) {
        x = 1, y = 0;
        return a;
    }
    int d = exgcd(b, a % b, y, x);
    y -= a / b * x;
    return d;
}

int main() {
    int n;
    cin >> n;
    while (n -- ) {
        int a, b;
        cin >> a >> b;
        int x, y;
        exgcd(a, b, x, y);
        cout << x << " " << y << endl;
    }
    
    return 0;
}
  • 线性同余方程

给定 n组数据 ai,bi,mi,对于每组数求出一个 xi,使其满足 ai*xi≡bi(modmi),如果无解则输出 impossible

输入格式

第一行包含整数 n。

接下来 n行,每行包含一组数据 ai,bi,mi。

输出格式

输出共 n行,每组数据输出一个整数表示一个满足条件的 xi,如果无解则输出 impossible

每组数据结果占一行,结果可能不唯一,输出任意一个满足条件的结果均可。

输出答案必须在 int 范围之内。

int exgcd(int a, int b, int &x, int &y) {
    if (!b) {
        x = 1; y = 0;
        return a;
    }
    int d = exgcd(b, a % b, y, x);
    y -= a / b * x;
    return d;
}

void solve() {
    int a, b, m, x, y;
    cin >> a >> b >> m;
    int d = exgcd(a, m, x, y);
    if (b % d) {
        puts("impossible");
    } else {
        cout << (LL)b / d * x % m << endl;
    }
}

int main() {
    int t;
    cin >> t;
    while (t -- ) {
        solve();
    }
    
    return 0;
}

6. 中国剩余定理

  • 表达整数的奇怪方式

给定 2n 个整数 a1,a2,…,an和 m1,m2,…,mn,求一个最小的非负整数 x,满足 ∀i∈[1,n],x≡mi(mod ai)。

输入格式

第 11 行包含整数 n。

第 2…n+1 行:每 i+1 行包含两个整数 ai 和 mi,数之间用空格隔开。

输出格式

输出最小非负整数 x,如果 x 不存在,则输出 −1−1。
如果存在 x,则数据保证 x 一定在 64 位整数范围内。

LL exgcd(LL a, LL b, LL &x, LL &y) {
    if (!b) {
        x = 1, y = 0;
        return a;
    }
    LL d = exgcd(b, a % b, y, x);
    y -= a / b * x;
    return d;
}

int main() {
    int n;
    cin >> n;
    bool flag = false;
    LL a1, m1;
    cin >> a1 >> m1;
    
    for (int i = 0; i < n - 1; i ++ ) {
        LL a2, m2;
        cin >> a2 >> m2;
        
        LL k1, k2;
        LL d = exgcd(a1, a2, k1, k2);
        if ((m2 - m1) % d) {
            flag = true;
            break;
        }
        k1 *= (m2 - m1) / d;
        LL t = a2 / d;
        k1 = (k1 % t + t) % t;
        
        m1 = a1 * k1 + m1;
        a1 = abs(a1 / d * a2);
    }
    
    if (!flag) {
        cout << (m1 % a1 + a1) % a1 << endl;
    } else {
        cout << -1 << endl;
    }
    
    return 0;
}

7. 求组合数

递推法求组合数
// c[a][b] 表示从a个苹果中选b个的方案数
for (int i = 0; i < N; i ++ )
    for (int j = 0; j <= i; j ++ )
        if (!j) c[i][j] = 1;
        else c[i][j] = (c[i - 1][j] + c[i - 1][j - 1]) % mod;
通过预处理逆元的方式求组合数
首先预处理出所有阶乘取模的余数fact[N],以及所有阶乘取模的逆元infact[N]
如果取模的数是质数,可以用费马小定理求逆元
int qmi(int a, int k, int p) {    // 快速幂模板
    int res = 1;
    while (k) {
        if (k & 1) res = (LL)res * a % p;
        a = (LL)a * a % p;
        k >>= 1;
    }
    return res;
}

// 预处理阶乘的余数和阶乘逆元的余数
fact[0] = infact[0] = 1;
for (int i = 1; i < N; i ++ ) {
    fact[i] = (LL)fact[i - 1] * i % mod;
    infact[i] = (LL)infact[i - 1] * qmi(i, mod - 2, mod) % mod;
}
Lucas定理
若p是质数,则对于任意整数 1 <= m <= n,有:
    C(n, m) = C(n % p, m % p) * C(n / p, m / p) (mod p)

int qmi(int a, int k, int p) {  // 快速幂模板
    int res = 1 % p;
    while (k) {
        if (k & 1) res = (LL)res * a % p;
        a = (LL)a * a % p;
        k >>= 1;
    }
    return res;
}

int C(int a, int b, int p) {  // 通过定理求组合数C(a, b)
    if (a < b) return 0;

    LL x = 1, y = 1;  // x是分子,y是分母
    for (int i = a, j = 1; j <= b; i --, j ++ ) {
        x = (LL)x * i % p;
        y = (LL) y * j % p;
    }

    return x * (LL)qmi(y, p - 2, p) % p;
}

int lucas(LL a, LL b, int p) {
    if (a < p && b < p) return C(a, b, p);
    return (LL)C(a % p, b % p, p) * lucas(a / p, b / p, p) % p;
}
分解质因数法求组合数
当我们需要求出组合数的真实值,而非对某个数的余数时,分解质因数的方式比较好用:
    1. 筛法求出范围内的所有质数
    2. 通过 C(a, b) = a! / b! / (a - b)! 这个公式求出每个质因子的次数。 n! 中p的次数是 n / p + n / p^2 + n / p^3 + ...
    3. 用高精度乘法将所有质因子相乘

int primes[N], cnt;     // 存储所有质数
int sum[N];     // 存储每个质数的次数
bool st[N];     // 存储每个数是否已被筛掉


void get_primes(int n) {      // 线性筛法求素数
    for (int i = 2; i <= n; i ++ ) {
        if (!st[i]) primes[cnt ++ ] = i;
        for (int j = 0; primes[j] <= n / i; j ++ ) {
            st[primes[j] * i] = true;
            if (i % primes[j] == 0) break;
        }
    }
}


int get(int n, int p) {       // 求n!中的次数
    int res = 0;
    while (n) {
        res += n / p;
        n /= p;
    }
    return res;
}


vector<int> mul(vector<int> a, int b) {      // 高精度乘低精度模板
    vector<int> c;
    int t = 0;
    for (int i = 0; i < a.size(); i ++ ) {
        t += a[i] * b;
        c.push_back(t % 10);
        t /= 10;
    }

    while (t) {
        c.push_back(t % 10);
        t /= 10;
    }

    return c;
}

get_primes(a);  // 预处理范围内的所有质数

for (int i = 0; i < cnt; i ++ ) {     // 求每个质因数的次数
    int p = primes[i];
    sum[i] = get(a, p) - get(b, p) - get(a - b, p);
}

vector<int> res;
res.push_back(1);

for (int i = 0; i < cnt; i ++ )     // 用高精度乘法将所有质因子相乘
    for (int j = 0; j < sum[i]; j ++ )
        res = mul(res, primes[i]);
卡特兰数
给定n个0和n个1,它们按照某种顺序排成长度为2n的序列,
满足任意前缀中0的个数都不少于1的个数的序列的数量为: Cat(n) = C(2n, n) / (n + 1)
  • 满足条件的01序列

给定 n 个 0 和 n个 1,它们将按照某种顺序排成长度为 2n 的序列,求它们能排列成的所有序列中,能够满足任意前缀序列中 0 的个数都不少于 1 的个数的序列有多少个。

输出的答案对 10^9+7 取模。

输入格式

共一行,包含整数 n。

输出格式

共一行,包含一个整数,表示答案。

LL qmi(LL a, int b, int p) {
    LL res = 1;
    while (b) {
        if (b & 1) {
            res = res * a % p;
        }
        a = a * a % p;
        b >>= 1;
    }
    return res;
}

void solve() {
    int n;
    cin >> n;
    int a = 2 * n, b = n;
    LL res = 1;
    for (int i = a; i > a - b; i -- ) {
        res = res * i % mod;
    }
    for (int i = 1; i <= b; i ++ ) {
        res = res * qmi(i, mod - 2, mod) % mod;
    }
    res = res * qmi(n + 1, mod - 2, mod) % mod;
    cout << res << endl;
}

int main() {
    int t = 1;
//    cin >> t;

    while (t -- ) {
        solve();
    }

    return 0;
}

8. 容斥原理

  • 能被整除的数

给定一个整数 n 和 m 个不同的质数 p1,p2,…,pm。

请你求出 1∼n中能被 p1,p2,…,pm中的至少一个数整除的整数有多少个。

输入格式

第一行包含整数 n和 m。

第二行包含 m 个质数。

输出格式

输出一个整数,表示满足条件的整数的个数。

int main() {
    cin >> n >> m;
    for (int i = 0; i < m; i ++ ) {
        cin >> p[i];
    }
    
    int res = 0;
    for (int i = 1; i < 1 << m; i ++ ) {
        int t = 1, cnt = 0; // t表示当前所有质数的乘积,cnt表示当前选法有几个集合
        for (int j = 0; j < m; j ++ ) {
            if (i >> j & 1) {
                cnt ++ ;
                if ((LL)t * p[j] > n) {
                    t = -1;
                    break;
                }
                t *= p[j];
            }
        }
        if (t != -1) {
            if (cnt % 2) {
                res += n / t;
            } else {
                res -= n / t;
            }
        }
    }
    
    cout << res << endl;
    
    return 0;
}

9. 博弈论

NIM游戏

给定N堆物品,第i堆物品有Ai个。两名玩家轮流行动,每次可以任选一堆,取走任意多个物品,可把一堆取光,但不能不取。取走最后一件物品者获胜。两人都采取最优策略,问先手是否必胜。

我们把这种游戏称为NIM博弈。把游戏过程中面临的状态称为局面。整局游戏第一个行动的称为先手,第二个行动的称为后手。若在某一局面下无论采取何种行动,都会输掉游戏,则称该局面必败。
所谓采取最优策略是指,若在某一局面下存在某种行动,使得行动后对面面临必败局面,则优先采取该行动。同时,这样的局面被称为必胜。我们讨论的博弈问题一般都只考虑理想情况,即两人均无失误,都采取最优策略行动时游戏的结果。
NIM博弈不存在平局,只有先手必胜和先手必败两种情况。

定理: NIM博弈先手必胜,当且仅当 A1 ^ A2 ^ … ^ An != 0

公平组合游戏ICG

若一个游戏满足:

由两名玩家交替行动;
在游戏进程的任意时刻,可以执行的合法行动与轮到哪名玩家无关;
不能行动的玩家判负;
则称该游戏为一个公平组合游戏。
NIM博弈属于公平组合游戏,但城建的棋类游戏,比如围棋,就不是公平组合游戏。因为围棋交战双方分别只能落黑子和白子,胜负判定也比较复杂,不满足条件2和条件3。

有向图游戏

给定一个有向无环图,图中有一个唯一的起点,在起点上放有一枚棋子。两名玩家交替地把这枚棋子沿有向边进行移动,每次可以移动一步,无法移动者判负。该游戏被称为有向图游戏。
任何一个公平组合游戏都可以转化为有向图游戏。具体方法是,把每个局面看成图中的一个节点,并且从每个局面向沿着合法行动能够到达的下一个局面连有向边。

Mex运算

设S表示一个非负整数集合。定义mex(S)为求出不属于集合S的最小非负整数的运算,即:
mex(S) = min{x}, x属于自然数,且x不属于S

SG函数

在有向图游戏中,对于每个节点x,设从x出发共有k条有向边,分别到达节点y1, y2, …, yk,定义SG(x)为x的后继节点y1, y2, …, yk 的SG函数值构成的集合再执行mex(S)运算的结果,即:
SG(x) = mex({SG(y1), SG(y2), …, SG(yk)})
特别地,整个有向图游戏G的SG函数值被定义为有向图游戏起点s的SG函数值,即SG(G) = SG(s)。

有向图游戏的和

设G1, G2, …, Gm 是m个有向图游戏。定义有向图游戏G,它的行动规则是任选某个有向图游戏Gi,并在Gi上行动一步。G被称为有向图游戏G1, G2, …, Gm的和。
有向图游戏的和的SG函数值等于它包含的各个子游戏SG函数值的异或和,即:
SG(G) = SG(G1) ^ SG(G2) ^ … ^ SG(Gm)

定理

有向图游戏的某个局面必胜,当且仅当该局面对应节点的SG函数值大于0。
有向图游戏的某个局面必败,当且仅当该局面对应节点的SG函数值等于0。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值