利用Tableau进行网上超市运营分析

网上超市是指基于互联网的在线超市销售平台,为消费者提供物美价廉、种类丰富的超市商品批发、零售服务,这是一种新型的购物方式。目前,网络超市的竞争越来越激烈。在这种情况下,经营超市需要的是自身的管理和比其他普通超市优越的赢利点,而不是随波逐流的模仿和跟风。

本章将以某超市在2016年至2019年共计4年的运营数据为数据源,围绕客户分析、配送分析、销售分析、利润分析、退货分析和预测分析6个方面进行全面、深入的分析。

在使用Tableau进行数据分析之前,我们需要收集整理需要的数据,并进行清洗,再用Tableau进行数据连接。具体过程这里将不做详细说明,只介绍导入数据后的分析过程。

1.1 客户分析

客户细分是深度分析客户需求、应对客户需求变化的重要手段。通过合理、系统的分析,企业可以知道客户有什么样的需求,分析客户消费特征,使运营策略得到最优的规划,发掘潜在有价值的客户。

在本案例中,客户分析将围绕商品交易次数、各省市利润额、客户散点图、客户交易量排名4个方面进行,客户分析的仪表板如图1-1所示。

 图1-1

1.1.1 交易次数统计

购买次数即购买频率,是指消费者或用户在一定时期内购买某种或某类商品的次数。一般说来,消费者的购买行为在一定时限内进行是有规律可循的。其中,购买次数是度量购买行为的一项重要指标,它是企业选择目标市场、确定经营方式、制定营销策略的重要依据,如图1-2所示。

图1-2

操作步骤:

步骤01 将“城市”的数据类型设置为“地理角色”中的“城市”,并把度量下的“维度(生成)”拖放到行功能区,“经度(生成)”拖放到列功能区。

步骤02 将维度下的“类别”拖放到“标记”卡的“颜色”中。

步骤03 将度量下的“记录数”拖放到“标记”卡的“大小”中。

步骤04 将维度下的“城市”拖放到“标记”卡的“详细信息”中。

步骤05 将维度下的“订单日期”拖放到“筛选器”上,并选择“显示筛选器”。

步骤06  将维度下的“类别”拖放到“筛选器”上,并选择“显示筛选器”,并将“省/自治区”拖放到“筛选器”上,在下拉框中选择“湖北”。

步骤07 在“标记”卡的显示下拉框中选择“饼图”。

1.1.2 各省市利润

利润是企业在一定会计期间的经营成果,包括收入减去费用后的净额、直接计入当期利润的利得和损失等。在本案例中,该超市不同类别的商品在全国各个省市的销售利润存在较大差异。此外,受到销售成本的限制,部分省市的利润还出现负值的情况,如图1-3所示。

图1-3

操作步骤

步骤01 将维度下的“类别”拖放到列功能区,将“省/自治区”拖放到行功能区。

步骤02 将度量下的“利润”拖放到“标记”卡的“颜色”中。

步骤03 将度量下的“利润”拖放到“标记”卡的“文本”中。

步骤04 将维度下的“订单日期”拖放到“筛选器”中,并选择“显示筛选器”。

1.1.3 客户散点图

“以客户为中心”的个性化服务越来越受重视,研究客户的个性化需求,分析不同客户对企业效益的影响,以便做出决策。在本案例中,不同类型商品的购买量是不同的,如图1-4所示。

 图1-4

操作步骤:

步骤01 将维度下的“销售额”拖放到列功能区,将“利润”拖放到行功能区。

步骤02 将度量下的“类别”拖放到“标记”卡的“颜色”中。

步骤03 将度量下的“客户名称”拖放到“标记”卡的“大小”中。

步骤04 将维度下的“订单日期”拖放到“筛选器”上,并选择“显示筛选器”。

步骤05 将维度下的“类别”拖放到“筛选器”上,并选择“显示筛选器”。

### Tableau 超市数据可视化示例教程 #### 使用场景概述 Tableau 对于超市销售数据的可视化提供了强大的工具和支持。通过简单的拖拽操作即可完成复杂的数据分析和展示,使得用户能够快速理解大量数据背后的信息[^1]。 #### 数据准备 为了进行有效的超市销售数据分析,通常会使用预定义好的样本数据集。这些数据集涵盖了多个维度,如地理分布、客户细分以及商品类别等重要方面。对于初学者来说,可以直接利用官方提供的样例文件来熟悉软件功能[^2]。 #### 关键指标仪表板设计 创建一个综合性的关键绩效指标(KPI)面板是十分必要的。该面板位于整个视图顶部位置,用于汇总显示特定时间段内的核心业务表现情况,比如年度总收入或利润增长率等宏观层面的内容。这有助于管理层迅速掌握企业运营状态并做出相应决策调整[^4]。 #### 可视化组件构建实例 - **地图视图**:基于地理位置信息绘制全国范围内的销售额热力图,直观反映不同区域市场的活跃程度; ```sql SELECT State, SUM(Sales) as Total_Sales FROM Superstore GROUP BY State; ``` - **柱状对比图**:比较各类目下的收入贡献比例,帮助识别哪些类别的产品更受消费者欢迎; ```sql SELECT Category, SUM(Profit) AS Profit_By_Category FROM Orders JOIN Products ON Orders.Product_ID = Products.Product_ID GROUP BY Category ORDER BY Profit_By_Category DESC; ``` - **时间序列折线图**:追踪每月订单量变化趋势,便于发现季节性波动规律及其对企业的影响因素; ```sql WITH MonthlyOrders AS (SELECT DATE_TRUNC('month', Order_Date) AS Month, COUNT(*) AS Num_Orders FROM Orders GROUP BY Month) SELECT * FROM MonthlyOrders ORDER BY Month ASC; ``` #### 高级特性应用 除了基础图形外,还可以进一步挖掘潜在模式。例如采用聚类算法找出具有相似购买行为特征的顾客群体,或是预测未来一段时间内某类产品的需求走势。这类高级分析往往依赖于平台内部集成的学习模型来进行自动化处理[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

吴闹闹(●'◡'●)

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值