1. 确保安装对应的CUDA Toolkit而不是cudatoolkit
通过 Runfile 安装
wget https://developer.download.nvidia.com/compute/cuda/11.8.0/local_installers/cuda_11.8.0_520.61.05_linux.run
chmod +x cuda_11.8.0_520.61.05_linux.run
sudo ./cuda_11.8.0_520.61.05_linux.run
运行完以上三条后处出现两个界面
![]()
输入accept即可

移动到install 按Enter键

出现这个页面就算安装成功,Driver那里虽然显示没有选择,只要输入
nvidia-smi # 确认驱动版本与 GPU 状态
显示驱动版本和安装的cuda相对应即可
验证
export PATH="/usr/local/cuda-11.8/bin:$PATH"
export LD_LIBRARY_PATH="/usr/local/cuda-11.8/lib64:$LD_LIBRARY_PATH"
nvcc -V
输入三条指令后出现cuda 11.8等字符就说明安装成功
注意:conda install pytorch==2.0.1 torchvision==0.15.2 torchaudio==2.0.2 pytorch-cuda=11.8 -c pytorch -c nvidia
类似这种代码只会安装cudatoolkit并不会安装CUDA Toolkit 并且会安装cuDNN集成到pytorch中,但是tf没办法用,所以必须安装cudnn
2. 安装cuDNN
https://developer.nvidia.com/rdp/cudnn-archive
官网下载

会有好多选项,一般时选择Linux x86_64
然后cd到下载的位置 /mnt/c/Users/Administrator/Desktop(注意要改成ubuntu对应的路径)
使用sudo tar -xvf cudnn-linux-x86_64-8.7.0.84_cuda11-archive.tar.xz解压后
sudo cp /mnt/c/Users/Administrator/Desktop/cudnn-linux-x86_64-8.7.0.84_cuda11-archive/include/* /usr/local/cuda-11.8/targets/x86_64-linux/include/
sudo cp /mnt/c/Users/Administrator/Desktop/cudnn-linux-x86_64-8.7.0.84_cuda11-archive/lib/libcudnn* /usr/local/cuda-11.8/targets/x86_64-linux/lib/
从cuDNN的两个地址copy到cuda-11.8下两个地址,注意cuda不同版本lib和include地址可能不同,多找一找
3. 安装tensorflow
从2.10开始,tf不支持在win上调用GPU,所以只能用ubuntu(我的是wsl+ubuntu),并且从2.10.0开始不存在tensorflow[gpu],cpu和gpu都是tensorflow
pip install tensorflow=2.12.0
在终端输入
import tensorflow as tf
print(tf.config.list_physical_devices('GPU')) # 应返回 GPU 设备列表
列表中包含GPU则代表可以正常使用
4. 通过 .bashrc 文件永久配置地址
当下次打开终端输入nvcc -V时发现没有出现cuda 11.8
需要重新输入
export PATH="/usr/local/cuda-11.8/bin:$PATH"
export LD_LIBRARY_PATH="/usr/local/cuda-11.8/lib64:$LD_LIBRARY_PATH"
才可以
可以通过下面的方法,永久配置
nano ~/.bashrc
找到.bashrc文件地址
![]()

在记事本中打开并在末尾添加并保存下面两个指令
export PATH="/usr/local/cuda-11.8/bin:$PATH"
export LD_LIBRARY_PATH="/usr/local/cuda-11.8/lib64:$LD_LIBRARY_PATH"
在终端输入source ~/.bashrc
之后每次打开新终端时,环境变量会自动加载
1274

被折叠的 条评论
为什么被折叠?



