题目描述】
高精除以高精,求它们的商和余数。
【输入】
输入两个低于300位的正整数。
【输出】
输出商和余数。
【输入样例】
1231312318457577687897987642324567864324567876543245671425346756786867867867 1231312318767141738178325678412414124141425346756786867867867
【输出样例】
999999999748590 179780909068307566598992807564736854549985603543237528310337
#include<iostream>
using namespace std;
#define N 305
//从数字数组a的第i位开始,删除高位的0
void setLen(int a[], int i)
{
while(a[i] == 0 && i > 1)//去除多余的0
i--;
a[0] = i;
}
//将字符数组转化为数字数组 数字数组从第1位置到第len位置,从低位到高位保存各位数字,第0位置保存数字位数
void toNum(char s[], int a[])
{
a[0] = strlen(s);
for(int i = 1; i <= a[0]; ++i)
a[i] = s[a[0] - i] - '0';
}
//输出数字数组
void showNum(int a[])
{
for(int i = a[0]; i >= 1; --i)
cout << a[i];
cout << endl;
}
//将数字数组b复制到数字数组a之中
void numcpy(int a[], int b[])
{
for(int i = 0; i <= b[0]; ++i)
a[i] = b[i];
}
//比较两个数字数组 如果a比b大,返回1,如果a比b小,返回-1,如果二者相等,返回0
int numcmp(int a[], int b[])
{
if(a[0] > b[0])//如果a的位数比较多
return 1;
else if (a[0] < b[0])//如果b的位数比较多
return -1;
else
{
for(int i = a[0]; i >= 1; --i)
{
if(a[i] > b[i])
return 1;
else if(a[i] < b[i])
return -1;
}
return 0;
}
}
//高精减高精 前提:a比b大
void Minus(int a[], int b[], int r[])
{
int i;
for(i = 1; i <= a[0] || i <= b[0]; ++i)
{
if(a[i] < b[i])
{
a[i+1]--;
a[i] += 10;
}
r[i] = a[i] - b[i];
}
setLen(r, i);
}
//高精度除以高精度
//a = a*10+num,即在数字数组的个位添加一位数,0 <= num <= 9,如2添加1后变为21
void addNum(int a[], int num)
{
if(a[0] == 1 && a[1] == 0)//如果a是0,那么就把个位设为num
a[1] = num;
else
{
for(int i = a[0]; i >= 1; --i)//数组移位
a[i+1] = a[i];
a[1] = num;
a[0]++;
}
}
//高精度除法中的减法代替除法操作,实际就是除法的另一种实现方式
//已知商一定是0~9的数字。a是被除数 b是除数 返回值为商,计算后数组a保存的是余数
int divideByMinus(int a[], int b[])
{
int q = 0, r[N];//q:商(减的次数) r:临时结果
while(numcmp(a, b) >= 0)
{
memset(r, 0, sizeof(r));
Minus(a, b, r);
numcpy(a, r);//将a设为上次减法的结果
q++;
}
return q;
}
//高精度数字除以高精度数字
void Divide(int a[], int b[], int r[], int x[])//r:商 x:余数
{
for(int i = a[0]; i >= 1; --i)
{
addNum(x, a[i]);
r[i] = divideByMinus(x, b);
}
setLen(r, a[0]);
}
int main()
{
int a[N] = {}, b[N] = {}, r[N] = {}, m[N] = {};//必须都初始化为0 r:商 m:余数
char s[N];
cin >> s;
toNum(s, a);
cin >> s;
toNum(s, b);
Divide(a, b, r, m);
showNum(r);
showNum(m);
return 0;
}