高精除

题目描述】

高精除以高精,求它们的商和余数。

【输入】

输入两个低于300位的正整数。

【输出】

输出商和余数。

【输入样例】

1231312318457577687897987642324567864324567876543245671425346756786867867867
1231312318767141738178325678412414124141425346756786867867867

【输出样例】

999999999748590
179780909068307566598992807564736854549985603543237528310337
#include<iostream>
using namespace std;
#define N 305
//从数字数组a的第i位开始,删除高位的0
void setLen(int a[], int i)
{
    while(a[i] == 0 && i > 1)//去除多余的0
        i--;
    a[0] = i;
}
//将字符数组转化为数字数组 数字数组从第1位置到第len位置,从低位到高位保存各位数字,第0位置保存数字位数
void toNum(char s[], int a[])
{
    a[0] = strlen(s);
    for(int i = 1; i <= a[0]; ++i)
        a[i] = s[a[0] - i] - '0';
}
//输出数字数组
void showNum(int a[])
{
    for(int i = a[0]; i >= 1; --i)
        cout << a[i];
    cout << endl;
}
//将数字数组b复制到数字数组a之中
void numcpy(int a[], int b[])
{
    for(int i = 0; i <= b[0]; ++i)
        a[i] = b[i];
}
//比较两个数字数组 如果a比b大,返回1,如果a比b小,返回-1,如果二者相等,返回0
int numcmp(int a[], int b[])
{
    if(a[0] > b[0])//如果a的位数比较多
        return 1;
    else if (a[0] < b[0])//如果b的位数比较多
        return -1;
    else
    {
        for(int i = a[0]; i >= 1; --i)
        {
            if(a[i] > b[i])
                return 1;
            else if(a[i] < b[i])
                return -1;
        }
        return 0;
    }
}
//高精减高精 前提:a比b大 
void Minus(int a[], int b[], int r[])
{
    int i;
    for(i = 1; i <= a[0] || i <= b[0]; ++i)
    {
        if(a[i] < b[i])
        {
            a[i+1]--;
            a[i] += 10;
        }
        r[i] = a[i] - b[i];
    }
    setLen(r, i);
}
//高精度除以高精度
//a = a*10+num,即在数字数组的个位添加一位数,0 <= num <= 9,如2添加1后变为21
void addNum(int a[], int num) 
{
    if(a[0] == 1 && a[1] == 0)//如果a是0,那么就把个位设为num 
        a[1] = num;
    else
    {
        for(int i = a[0]; i >= 1; --i)//数组移位
            a[i+1] = a[i];
        a[1] = num;
        a[0]++;
    }
}
//高精度除法中的减法代替除法操作,实际就是除法的另一种实现方式
//已知商一定是0~9的数字。a是被除数 b是除数 返回值为商,计算后数组a保存的是余数
int divideByMinus(int a[], int b[])
{
    int q = 0, r[N];//q:商(减的次数) r:临时结果 
    while(numcmp(a, b) >= 0)
    {
        memset(r, 0, sizeof(r));
        Minus(a, b, r);
        numcpy(a, r);//将a设为上次减法的结果
        q++;
    }
    return q;
}
//高精度数字除以高精度数字
void Divide(int a[], int b[], int r[], int x[])//r:商 x:余数 
{
    for(int i = a[0]; i >= 1; --i)
    {
        addNum(x, a[i]);
        r[i] = divideByMinus(x, b);
    }
    setLen(r, a[0]); 
}
int main()
{
    int a[N] = {}, b[N] = {}, r[N] = {}, m[N] = {};//必须都初始化为0 r:商 m:余数 
    char s[N];
    cin >> s;
    toNum(s, a);
    cin >> s;
    toNum(s, b);
    Divide(a, b, r, m);
    showNum(r);
    showNum(m);
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值