从零开始的数模学习(3):层次分析法(评价类模型)

目录

1模型的建立

1.层次分析法简介

2.层次分析法步骤

2.1建立层次结构模型

2.2构造判断矩阵

 2.3层次单排序和一致性检验

2.4计算权重向量

2.5层次总排序

3模型的求解

3.1层次结构模型 

3.2构造判断矩阵及一致性检验

3.3层次总排序即求各方案的综合得分

3.4结论  

4模型评价与推广

5.求解代码



        假期旅游,是前往风景宜人的桂林,还是去地质景观丰富的北戴河,还是去黄山呢?我们往往会根据景色、费用、食宿条件、旅途等因素综合进行选择。

1模型的建立

1.层次分析法简介

        T.L.Saaty等人在20 世纪70年代提出了一种能有效处理决策问题的实用方法,称为层次分析法(Analytic Hierarchy Process,简记为AHP)。层次分析法(AHP)是一种系统分析方法,是一种综合定性与定量相结合的分析方法。主要解决多因素复杂系统,特别是难以定量描述的社会系统的分析方法。

2.层次分析法步骤

2.1建立层次结构模型

        一般分为三层,最上面的为目标层,最下面的为方案层,中间是准则层或指标层。

2.2构造判断矩阵

         判断矩阵表示针对上一层次某因素而言,本层次与之有关的各因素之间的相对重要性。假设A层中因素A_{k}与下一层次中因素B_{1},B_{2},...,B_{n}有联系,则我们构造的判断矩阵如下表:

A_{k}B_{1}B_{2}...B_{n}
B_{1}b_{11}b_{12}...b_{1n}
B_{2}b_{21}b_{22}...b_{2n}
...............
B_{n}b_{n1}b_{n2}...b_{nn}

         b_{ij}是对于A_{k}而言,B_{i}B_{j}的相对重要性的数值表示。b_{ij},即相对重要性的大小采用托马斯·塞蒂的“1-9标度法”。

尺寸含义
1第i个因素与第j个因素的影响相同
3第i个因素比第j个因素的影响稍强
5第i个因素比第j个因素的影响强
7第i个因素比第j个因素的影响明显强
9第i个因素比第j个因素的影响绝对的强
2,4,6,8第i个因素比第j个因素的影响强度介于上述两个相邻等级之间

          如果决策人对n个因素的重要性的比较具有逻辑的绝对一致性,即

                                                      b_{ij} \cdot b_{jk} = b_{ik},i,j,l = 1,...,n

         那么我们称这样的成对比较矩阵为一致矩阵。

 2.3层次单排序和一致性检验

         层次单排序是根据判断矩阵计算对于上一层某因素而言本层次与之有联系的因素的重要性次序的权值。可通过求解矩阵的最大特征根和对应的特征向量来获得。即对于判断矩阵A,计算满足:

                                                              AW = \lambda _{max}W                                                     (1)

的特征根和特征向量。式中,\lambda _{max}为A的最大特征根,W为对应与\lambda _{max}的正规化特征向量,W的分量W_{i}即为相应因素单排序的权值。 

         定义一致性指标CI为:

                                                           CI = \frac{\lambda_{max} - n}{n - 1}                                                      (2)

        为检验判断矩阵一致性,引入平均一致性指标RI进行判断。

        下表给出了500个样本判断矩阵计算的平均随机一致性指标检验值。

阶数123456789101112131415
RI000.580.91.121.241.321.411.451.491.521.541.561.581.59

         计算一致性比例CR

                                                                   CR = \frac{CI}{RI}                                                      (3)

        一般情况下,若CR \leq 0.10,就认为判断矩阵具有一致性。据此而计算的值是可以接受的。

2.4计算权重向量

        当我们构造出可以接受的判断矩阵是,我们就可以计算此层中n个元素在目标z中所占的比重,将这些比重写成向量并归一化即得权向量w = (w_{1},w_{2},...,w_{n})^{T}

        计算权向量的求法:

        (1)算术平均法求权重:取成对对比矩阵A = (a_{ij})_{n\times n}的n个行向量归一化后的算数平均值作为权向量。

        (2)几何平均 法求权重:取成对对比矩阵A = (a_{ij})_{n\times n}的n个行向量归一化后的算数平均值作为权向量。

        (3)特征值法: 求矩阵A = (a_{ij})_{n\times n}的最大特征值所对应的向量并进行归一化即可作为权向量。

        在本文中,为了得到更精确的数据,我们将取三种权向量结果的平均值。

2.5层次总排序

        层次总排序为确定某层所有因素对于总目标相对重要性的排序权值的过程。对于上一层A,其包含m个因素A_{1},A_{2},...,A_{m},其层次总排序的权值为a_{1},a_{2},...,a_{m},下一层次B包含n个元素B_{1},B_{2},...,B_{n},它们对于因素A_{j}的层次单排序权值分别为b_{1}^{j},b_{2}^{j},...,b_{n}^{j}(当B_{i}A_{j}无联系时,b_{i}^{j}=0),此时B层次总排序权值由下表给出:

指标权重B_{1}B_{2}...B_{n}
A_{1}a_{1}b_{1}^{1}b_{2}^{1}...b_{n}^{1}
A_{2}a_{2}b_{1}^{2}b_{2}^{2}...b_{n}^{2}
..................
A_{m}a_{m}b__{1}^{m}b_{2}^{m}...b_{n}^{m}
B层次的总排序\sum_{j=1}^{m}a_{j}b_{1}^{j}\sum_{j=1}^{m}a_{j}b_{2}^{j}...\sum_{j=1}^{m}a_{j}b_{n}^{j}

         显然,

                                                            \sum_{i=1}^{n}\sum_{j=1}^{m}a_{j}b_{i}^{j} = 1                                             (4)

3模型的求解

3.1层次结构模型 

3.2构造判断矩阵及一致性检验

        设要比较各准则C_{1},C_{2},...,C_{n}对目标O的重要性,判断矩阵如图:

C_{1}C_{2}C_{3}C_{4}C_{5}
C_{1}11/2433
C_{2}21755
C_{3}1/41/711/21/3
C_{4}1/31/5211
C_{5}1/31/5311

         最大特征值\lambda _{max} = 5.073,权向量 w = (0.263,0.475,0.055,0.090,0.110)^{T}

        一致性指标:CI = \frac{5.073 - 5}{5 - 1} = 0.01825,随机一致性指标RI = 1.12,一致性比例为CR = \frac{0.01825}{1.12} = 0.0162946 < 1.0

        记第二层(决策层)对第一层(目标层)的权向量为:

                                                w^{(2)} = (w_{1}^{(2)},w_{2}^{(2)},...,w_{n}^{(2)})^{T}

        同样求第三层(方案层)对第二层每一元素的权向量(省略判断矩阵图表)

        RI = 0.58 (n = 3),CI_{k} 均可以通过一致性检验。

3.3层次总排序即求各方案的综合得分

        求P层次的总排序得:

k12345P层次的综合得分
w^{(2)}0.2630.4750.0550.0900.110
w_{k}^{(3)}桂林0.5950.0820.4290.6330.1660.300
黄山0.2770.2360.4290.1930.1660.246
北麓河0.1290.6820.1420.1750.6880.456
\lambda_{max}3.0053.00233.0093
CI_{k}0.0030.00100.0050

  

       

       

3.4结论  

         故,选桂林是最优方案。

4模型评价与推广

        优点 :思路简单明了,将决策者的思维过程条理化、数量化,便于计算,容易被人们接受:所需要的定量化数据较少,且对问题的本质,问题所涉及的因素及其内在关系分析的比较透彻、清楚。

        缺点:存在较大的随意性;只能从现有的方案中选择最优的一个,而不能提供一个新的或者更好的方案;人的主观因素起很大的作用。

        改进:我们可以让多个专家来做出判断,或者以问卷的调查方式得出此矩阵。

  • 4
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
好的,我理解了你的问题。首先,层次分析法是一种定量分析方法,可以用于处理复杂的决策问题。它将一个大的决策问题拆分成多个层次,每个层次包含若干个决策因素,并通过比较这些因素的重要性来得出最终的决策结果。现在,我们来分析数学传统课程和多媒体课程的综合评价模型。 首先,我们需要确定评价模型的目标。在这里,我们的目标是比较数学传统课程和多媒体课程的教学效果,从而得出哪种课程更适合学生学习数学。为了实现这个目标,我们需要考虑一些决策因素,例如教学质量、学生反馈、教学成本等。 其次,我们需要确定每个决策因素的重要性。为了做到这一点,我们可以采用专家打分法,即让一些专家根据自己的经验和知识对每个决策因素进行打分,并将这些打分结果进行加权平均,从而得出每个决策因素的权重。 最后,我们可以使用层次分析法计算每个课程的综合评价得分。具体地说,我们可以将每个决策因素在层次结构中排列,并根据其权重计算出每个因素的得分。然后,我们可以将这些得分加权平均,从而得出每个课程的综合评价得分。最终,我们可以比较这些得分,从而得出哪种课程更适合学生学习数学。 总之,使用层次分析法可以帮助我们建立一个综合评价模型,以比较数学传统课程和多媒体课程的教学效果。通过分析每个决策因素的重要性,并计算每个课程的综合评价得分,我们可以得出最终的结论。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值