对于一般情况下我们求区间内的最值,第一想法是暴力求解,单次查询时间复杂度为O(N),,n次查询便是O(n^2),对于更多次的查询肯定会TLE,所以我们引出了更高效的求解算法RMQ。实际上就是用动态规划预先处理数据,查询时时间复杂度是常数级。
RMQ算法初识:
RMQ (Range Minimum/Maximum Query)问题是指:对于长度为n的数列A,回答若干询问RMQ(A,i,j)(i,j<=n),返回数列A中下标在i,j里的最小(大)值,也就是说,RMQ问题是指求区间最值的问题。
时间复杂度:O(N)~O(logN)
算法的主要思想:分治、倍增、动态规划
例如:
我们可以先设状态f[i][j]为从i开始的长度为2的j次方区间的最大值
可以得到:
当j=0时,f[i][j]的最大值即为a[i](第i个数)
其余情况时,f[i][j]的最大值分成两段来求
从i开始长度为2的j-1次方的区间,从i加上2的j-1次方长度为2的j-1次方的区间,把这两段区间取max即可
所以,f[i][j]=max(f[i][j-1],f[i+(1<<j-1)][j-1])
设查询的区间l~r的长度是len
我们还是把这段区间分成两段
把它分成两段的点k就是log(len)/log(2)
再分别求最大值取max即可
例题:天才的记忆
题目描述:
从前有个人名叫 WNB,他有着天才般的记忆力,他珍藏了许多许多的宝藏。
在他离世之后留给后人一个难题(专门考验记忆力的啊!),如果谁能轻松回答出这个问题,便可以继承他的宝藏。
题目是这样的:给你一大串数字(编号为 11 到 N,大小可不一定哦!),在你看过一遍之后,它便消失在你面前,随后问题就出现了,给你 M 个询问,每次询问就给你两个数字 A,B要求你瞬间就说出属于 A 到 B 这段区间内的最大数。
一天,一位美丽的姐姐从天上飞过,看到这个问题,感到很有意思(主要是据说那个宝藏里面藏着一种美容水,喝了可以让这美丽的姐姐更加迷人),于是她就竭尽全力想解决这个问题。
但是,她每次都以失败告终,因为这数字的个数是在太多了!
于是她请天才的你帮他解决。如果你帮她解决了这个问题,可是会得到很多甜头的哦!
输入格式
第一行一个整数 N 表示数字的个数。
接下来一行为 N 个数,表示数字序列。
第三行读入一个 M,表示你看完那串数后需要被提问的次数。
接下来 M 行,每行都有两个整数 A,B。
输出格式
输出共 M 行,每行输出一个数,表示对一个问题的回答。
数据范围
1≤N≤2×105
1≤M≤104
1≤A≤B≤N
输入样例:
6
34 1 8 123 3 2
4
1 2
1 5
3 4
2 3
输出样例:
34
123
123
8
代码示例:
//区间查询算法 时间复杂度nlog(n)+m-------dp思想
//对于每一个查询的区间,可以用一个数表示 它的二次幂不超过当前区间长度的值最小的数,把区间看成两个区间,
//对于区间[l,r], 存在一个数k,两个区间f[i][i+(1<<k-1)] f[i+(1<<k-1)][k-1] 所以最大值可以看成这两个区间的最大值
#include <iostream>
#include <algorithm>
#include <cmath>
const int N = 200010,M=20;
using namespace std;
int a[N];
int f[N][M];
int n,m;
int main()
{
cin>>n;
for(int i=1;i<=n;i++)cin>>a[i];
for(int j=0;j<M;j++)
{
for(int i=1;i+(1<<j)-1<=n;i++)
{
if(!j)f[i][j]=a[i];
else f[i][j]=max(f[i][j-1],f[i+(1<<j-1)][j-1]);
cout<<f[i][j]<<' ';
}
}
cin>>m;
while (m -- )
{
int l,r;
cin>>l>>r;
int len=r-l+1;
int k=log(len)/log(2);
//cout<<max(f[l][k],f[r-(1<<k)+1][k])<<endl;
}
return 0;
}