【高数+复变函数】傅里叶级数


在课程学习中,感觉这一部分的东西频繁会被用到,因此写下来做个总结。

1. 傅里叶级数

在科学技术中,常常会遇到各种各样的周期现象.周期现象在数学上可用周期函数来近似描述,最简单的周期函数是正弦(或余弦)函数:
y = A sin ⁡ ( ω x + φ ) , y=A\sin(\omega x+\varphi), y=Asin(ωx+φ),
现在我们考虑:能否把一个给定的以 2 π 2\pi 2π为周期的周期函数 f ( x ) f(x) f(x)表示(展开)成一列正弦函数(最简单的周期函数)之和呢?也就是表达式:
f ( x ) = A 0 + ∑ n = 1 ∞ A n sin ⁡ ( n x + φ n ) f(x)=A_0+\sum\limits_{n=1}^{\infty} A_n\sin(nx+\varphi_n) f(x)=A0+n=1Ansin(nx+φn)
如果能,那么,就可以通过简单的正弦函数来研究复杂的周期函数 f ( x ) f(x) f(x)的性质.用 n n n次三角多项式来任意逼近周期函数 f ( x ) f(x) f(x).在物理上就可以用简单的正弦波的叠加来研究各种复杂的周期现象.

实际上,早在1807 年法国数学家和物理学家 Fourier 在研究热传导问题时就研究并解决了这个问题,后人因此称之为把函数 f ( x ) f(x) f(x)展开为 Fourier 级数.


A n sin ⁡ ( n x + φ n ) = A n ( sin ⁡ n x c o s φ n + cos ⁡ n x sin ⁡ φ n ) = a n cos ⁡ n x + b x sin ⁡ n x ,记 A 0 = a 0 2 A_n\sin(nx+\varphi_n)=A_n(\sin nxcos\varphi_n+\cos nx\sin\varphi_n)=a_n\cos nx+b_x\sin nx,记A_0 = \frac{a_0}{2} Ansin(nx+φn)=An(sinnxcosφn+cosnxsinφn)=ancosnx+bxsinnx,记A0=2a0
所以上面的问题就变成了:
f ( x ) = a 0 2 + ∑ n = 1 x ( a n cos ⁡ n x + b n sin ⁡ n x ) f(x)=\frac{a_0}{2}+\sum\limits_{n=1}^x(a_n\cos nx+b_n\sin nx) f(x)=2a0+n=1x(ancosnx+bnsinnx)

  • (1) 在 f ( x ) f(x) f(x)满足什么条件时成立
  • (2) 展开式中的系数 a 0 , a n , b n ( n = 1 , 2 , … … ) a_0,a_n,b_n (n=1,2,……) a0,an,bn(n=1,2,……)如何计算

下面的内容将围绕如何处理这两个问题而展开

1.1 和差化积+积化和差

为下面的推导做一些铺垫,记住这张图就行了(●’◡’●)

img

1.2 三角函数系的正交性

傅里叶级数形式上可以理解成在三角函数系上展开:
[ 1 , cos ⁡ x , sin ⁡ x , cos ⁡ 2 x , sin ⁡ 2 x , ⋯   , cos ⁡ n x , sin ⁡ n x , ⋯   ] [1,\cos x,\sin x,\cos2x,\sin2x,\cdots,\cos nx,\sin nx,\cdots] [1,cosx,sinx,cos2x,sin2x,,cosnx,sinnx,]
这个函数系有一个非常重要的性质 : 其中任意两个不同函数的乘积在[ − π , π - \pi,\pi π,π]上的积分等于零,而任一函数的平方在[ − π , π - \pi,\pi π,π]上的积分都不等于零.

即:
∫ − π π cos ⁡ n x d x = 0 , ∫ − π π sin ⁡ n x d x = 0 ∫ − π π cos ⁡ m x cos ⁡ n x d x = 0 , ∫ − π π sin ⁡ m x sin ⁡ n x d x = 0 ( m ≠ n ) , ∫ − π π sin ⁡ m x cos ⁡ n x d x = 0 ; ∫ − π π cos ⁡ 2 n x d x = ∫ − π π sin ⁡ 2 n x d x = π , ∫ − π π 1 2 d x = 2 π . \int_{-\pi}^\pi\cos nx dx=0,\quad\int_{-\pi}^\pi\sin nxdx=0\\ \int_{-\pi}^{\pi}\cos mx\cos nx\mathrm{d}x=0,\quad\int_{-\pi}^{\pi}\sin mx\sin nx\mathrm{d}x=0\quad(m\neq n),\quad\int_{-\pi}^{\pi}\sin mx \cos nx\mathrm{d}x=0;\\\int_{-\pi}^\pi\cos^2nx\mathrm dx=\int_{-\pi}^\pi\sin^2nx\mathrm dx=\pi,\int_{-\pi}^\pi1^2\mathrm dx=2\pi. ππcosnxdx=0,ππsinnxdx=0ππcosmxcosnxdx=0,ππsinmxsinnxdx=0(m=n),ππsinmxcosnxdx=0;ππcos2nxdx=ππsin2nxdx=π,ππ12dx=2π.

其中,不同函数的乘积可以用积化和差之后再积分,容易证得积分为0

所以,三角函数系在长为一个周期的任何区间 [ a , a + 2 π ] [a,a+2\pi] [a,a+2π]上都构成一个正交函数系。

1.3 系数公式求解

假定 f f f在[ − π , π - \pi,\pi π,π]上能展开为三角级数,即:
f ( x ) = a 0 2 + ∑ n = 1 x ( a n cos ⁡ n x + b n sin ⁡ n x ) f(x)=\frac{a_0}{2}+\sum\limits_{n=1}^x(a_n\cos nx+b_n\sin nx) f(x)=2a0+n=1x(ancosnx+bnsinnx)

并且假定右端级数在[ − π , π - \pi,\pi π,π]上一致收敛于 f f f,在上式两端同乘 c o s k x ( k = 0 , 1 , 2 …   ) cos kx (k=0,1,2 \dots) coskx(k=0,1,2),并在 [ − π , π ] [- \pi,\pi] [π,π]上积分,得:
∫ − π π f ( x ) cos ⁡ k x d x = a 0 2 ∫ − π π cos ⁡ k x d x + ∑ n = 1 π ( a n ∫ − π π cos ⁡ n x cos ⁡ k x d x + b n ∫ − π π sin ⁡ n x cos ⁡ k x d x ) . \int_{-\pi}^\pi f(x)\cos k\mathrm{xd}x=\frac{a_0}{2}\int_{-\pi}^\pi\cos k\mathrm{xd}x+\sum_{n=1}^\pi\left(a_n\int_{-\pi}^\pi\cos nx\cos kx\mathrm{d}x+b_n\int_{-\pi}^\pi\sin nx\cos kx\mathrm{d}x\right). ππf(x)coskxdx=2a0ππcoskxdx+n=1π(anππcosnxcoskxdx+bnππsinnxcoskxdx).
利用正交性地性质,当 k = 0 k=0 k=0时:
∫ − π π f ( x ) d x = a 0 2 ∫ − π π d x = π a 0 \int_{-\pi}^\pi f(x)\mathrm{d}x=\frac{a_0}{2}\int_{-\pi}^\pi\mathrm{d}x=\pi a_0 ππf(x)dx=2a0ππdx=πa0
从而得到 a 0 a_0 a0:
a 0 = 1 π ∫ − π π f ( x ) d x a_0=\frac{1}{\pi}\int_{-\pi}^\pi f(x)\mathrm{d}x a0=π1ππf(x)dx
k ≠ 0 k \neq 0 k=0时:
∫ − π π f ( x ) cos ⁡ k x d x = a k ∫ − π π cos ⁡ 2 k x d x = π a k \int_{-\pi}^\pi f(x)\cos kx\mathrm dx=a_k\int_{-\pi}^\pi\cos^2kx\mathrm dx=\pi a_k ππf(x)coskxdx=akππcos2kxdx=πak
从而得到:
a k = 1 π ∫ − π π f ( x ) cos ⁡ k x d x ( k = 1 , 2 , ⋯   ) a_k=\frac{1}{\pi}\int_{-\pi}^\pi f(x)\cos kx\mathrm{d}x(k=1,2,\cdots) ak=π1ππf(x)coskxdx(k=1,2,)
同理用 s i n k x sinkx sinkx同乘两端,得到:
b k = 1 π ∫ − π π f ( x ) sin ⁡ k x d x ( k = 1 , 2 , ⋯   ) b_k=\frac{1}{\pi}\int_{-\pi}^{\pi}f(x)\sin kx\mathrm{d}x\quad(k=1,2,\cdots) bk=π1ππf(x)sinkxdx(k=1,2,)
这样也就推出了 a 0 , a k , b k a_0,a_k,b_k a0,ak,bk这三个系数:

image-20230507155535859

1.4 展开条件

对于之前提出的 问题(1):在 f ( x ) f(x) f(x)满足什么条件时能展成傅里叶级数,至今还没有便于应用的判别敛散性的充要条件,书中只介绍了一个应用较为广泛的充分条件(充分性不加证明)

Dirichlet 定理: 设函数分段单调,而且除有限个第一类间断点外都是连续的,那么它的 Fourier 级数在[ − π , π - \pi,\pi π,π]上收敛,且傅里叶级数的和函数为:
S ( x ) = { f ( x ) , x  是  f  的连续点,  f ( x − 0 ) + f ( x + 0 ) 2 , x  是  f  的间断点,  f ( − π + 0 ) + f ( π − 0 ) 2 , x = ± π . S(x)= \begin{cases} f(x), & x \text { 是 } f \text { 的连续点, } \\ \mathbf{\frac{f(x-0)+f(x+0)}{2}}, & x \text { 是 } f \text { 的间断点, } \\ \mathbf{\frac{f(-\pi+0)+f(\pi-0)}{2}}, & x= \pm \pi .\end{cases} S(x)= f(x),2f(x0)+f(x+0),2f(π+0)+f(π0),x  f 的连续点x  f 的间断点x=±π.

为此, 说明什么叫分段单调函数. 设有函数 f : [ a , b ] → R f:[a, b] \rightarrow \mathbf{R} f:[a,b]R, 如果在 [ a , b ] [a, b] [a,b] 内插入 n − 1 n-1 n1 个分点
a = x 0 < x 1 < x 2 < ⋯ < x n − 1 < x n = b , a=x_0<x_1<x_2<\cdots<x_{n-1}<x_n=b, a=x0<x1<x2<<xn1<xn=b,
能使 f f f 在每个开子区间 ( x k − 1 , x k ) \left(x_{k-1}, x_k\right) (xk1,xk) 内都单调, 那么就称 f f f [ a , b ] [a, b] [a,b] 上分段单调(其中的n存在即可,只要能通过有限的点将 f f f分成单调的即为分段单调函数)

image-20230507154428926

另外,如果 f f f在[ − π , π - \pi,\pi π,π]上是奇函数,则 a n = 1 π ∫ − π π f ( x ) cos ⁡ n x d x = 0 , 且 a 0 = 0 a_n=\frac{1}{\pi}\int_{-\pi}^\pi f(x)\cos nx\mathrm dx=0,且a_0 = 0 an=π1ππf(x)cosnxdx=0,a0=0

傅里叶展开式变为:
f ( x ) = ∑ n = 1 ∞ b n sin ⁡ n x , x ∈ ( − ∞ , + ∞ ) . f(x)=\sum\limits_{n=1}^\infty b_n\sin nx,\quad x\in(-\infty,+\infty). f(x)=n=1bnsinnx,x(,+).
其中, b n = 1 π ∫ − π π f ( x ) sin ⁡ n x d x = 2 π ∫ 0 π f ( x ) sin ⁡ n x d x ( n = 1 , 2 , ⋯   ) b_{n}=\frac{1}{\pi}\int_{-\pi}^{\pi}f(x)\sin nx\mathrm{d}x=\frac{2}{\pi}\int_{0}^{\pi}f(x)\sin nx\mathrm{d}x(n=1,2,\cdots) bn=π1ππf(x)sinnxdx=π20πf(x)sinnxdx(n=1,2,)

奇函数的傅里叶展开式只含正弦项,称为傅里叶正弦级数。

同理,余弦级数为( a 0 a_0 a0与正弦级数有区别):
f ( x ) = a 0 2 + ∑ n = 1 π a n cos ⁡ n x , x ∈ ( − ∞ , + ∞ ) f(x)=\frac{a_0}{2}+\sum\limits_{n=1}^\pi a_n\cos nx,\quad x\in(-\infty,+\infty) f(x)=2a0+n=1πancosnx,x(,+)
总结为:
image-20230507155901980

1.5 变形下的傅里叶

  1. 2 l 2l 2l周期下的傅里叶

f ( x ) f(x) f(x)是周期为 2 l 2l 2l的函数,并且在 [ − l , l ] [-l,l] [l,l]上满足 Dirichlet 条件,现在要求它的 Fourier 展开。

首先做变量代换:
x = l π t , 即 t = π l x x=\frac{l}{\pi}t,即t=\frac{\pi}{l}x x=πlt,t=lπx
对于t来说,是满足傅里叶条件的,即:
g ( t ) = a 0 2 + ∑ n = 1 ∞ ( a n cos ⁡ n t + b n sin ⁡ n t ) g(t)=\frac{a_0}{2}+\sum\limits_{n=1}^\infty\big(a_n\cos nt+b_n\sin nt\big) g(t)=2a0+n=1(ancosnt+bnsinnt)
把里面的t全部用x换掉,即可得:
f ( x ) = a 0 2 + ∑ n = 1 x ( a n cos ⁡ n π x l + b n sin ⁡ n π x l ) f(x)=\frac{a_0}{2}+\sum\limits_{n=1}^{x}\left(a_n\cos\frac{n\pi x}{l}+b_n\sin\frac{n\pi x}{l}\right) f(x)=2a0+n=1x(ancoslx+bnsinlx)
其中的系数也同样代换,注意 d t ⟶ d x dt \longrightarrow dx dtdx
{ a n = 1 l ∫ − l l f ( x ) cos ⁡ n π x l d x ( n = 0 , 1 , 2 , ⋯   ) , b n = 1 l ∫ − l l f ( x ) sin ⁡ n π x l d x ( n = 1 , 2 , ⋯   ) . \begin{cases}a_{n}=\frac{1}{l}\int_{-l}^{l}f(x)\cos\frac{n\pi x}{l}\mathrm{d}x&\left(n=0,1,2,\cdots\right),\\ \\ b_{n}=\frac{1}{l}\int_{-l}^{l}f(x)\sin\frac{n\pi x}{l}\mathrm{d}x&\left(n=1,2,\cdots\right).\end{cases} an=l1llf(x)coslxdxbn=l1llf(x)sinlxdx(n=0,1,2,),(n=1,2,).

  1. 奇偶拓延

如果要求将 f f f [ 0 , l ] [0,l] [0,l]上展开成 Fourier 余弦级数,可采用偶延拓的方式,就是使 f f f [ − l , l ] [-l,l] [l,l]上的偶函数,即
F ( x ) = { f ( x ) , 0 ⩽ x ⩽ l , f ( − x ) , − l ⩽ x < 0. F(x)=\left\{\begin{matrix}f(x),&0\leqslant x\leqslant l,\\ f(-x),&-l\leqslant x<0.\end{matrix}\right. F(x)={f(x),f(x),0xl,lx<0.
这样展开之后的结果只取 [ 0 , l ] [0,l] [0,l]区间,即为 f f f的傅里叶余弦展开式

同理如果要求将 f f f [ 0 , l ] [0,l] [0,l]上展开成 Fourier 正弦级数,可采用奇延拓的方式,就是使 f f f [ − l , l ] [-l,l] [l,l]上的奇函数。

[]( ̄▽ ̄)这些就是傅里叶级数的主要基础知识喽,之后还会更新傅里叶积分、傅里叶变换等相关傅里叶知识[]( ̄▽ ̄)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值