复变函数:傅里叶级数

1 对周期函数进行分解的猜想

拉格朗日等数学家发现某些周期函数可以由三角函数的和来表示,比如下图:
在这里插入图片描述
而后,其他数学家猜测任意周期函数都可以写成三角函数之和。

2 分解的思路

常数项的分解

根据周期函数的定义,常数函数是周期函数,其周期是任意实数,所以,对于 y = C , C ∈ R y=C,C\in \mathbb{R} y=C,CR 这样的常数函数,分解里面要添加一个常数项与之对应。

其他部分的分解

其他部分可以通过 sin ⁡ ( x ) , cos ⁡ ( x ) \sin(x),\cos(x) sin(x),cos(x)两个三角进行分解,主要思路如下:

  • sin ⁡ ( x ) , cos ⁡ ( x ) \sin(x),\cos(x) sin(x),cos(x)是周期函数,进行合理的加减组合,结果可以是周期函数,且它们的微分和积分都很简单。
  • 任意函数都可以分解成奇偶函数之和:
    f ( x ) = f ( x ) + f ( − x ) 2 + f ( x ) − f ( − x ) 2 = f e v e n + f o d d f(x)={f(x)+f(-x)\over 2}+{f(x)-f(-x)\over 2}=f_{even}+f_{odd} f(x)=2f(x)+f(x)+2f(x)f(x)=feven+fodd
  • sin ⁡ ( x ) \sin(x) sin(x)是奇函数,奇函数与奇函数加减永远是奇函数
  • cos ⁡ ( x ) \cos(x) cos(x)是偶函数,偶函数和偶函数加减永远是偶函数
保证组合的周期为T

之前提到 f ( x ) f(x) f(x)是周期为T的函数,那么怎么保证组合出来的函数周期仍然为T呢?

首先,我们知道 sin ⁡ ( x ) \sin(x) sin(x)的周期为 2 π 2\pi 2π sin ⁡ ( 2 x ) \sin(2x) sin(2x)的周期也是 2 π 2\pi 2π,但是最小周期是 π \pi π,很显然, s i n ( n x ) , n ∈ N sin(nx),n\in N sin(nx),nN的周期都是 2 π 2\pi 2π。所以更一般地,如果 f ( x ) f(x) f(x)的周期为T,那么 s i n ( 2 π n T x ) , c o s ( 2 π n T x ) , n ∈ N sin({2\pi n\over T}x),cos({2\pi n\over T}x),n\in N sin(T2πnx),cos(T2πnx),nN 这些函数的周期也为T,将这些函数进行加减,就保证了得到的函数周期也为T。

调整振幅

假如有如下这个函数,周期为 2 π 2\pi 2π
在这里插入图片描述
现在我们也有一些周期为 2 π 2\pi 2π的函数,比如 s i n ( x ) , s i n ( 2 x ) , s i n ( 3 x ) , s i n ( 4 x ) , s i n ( 5 x ) sin(x),sin(2x),sin(3x),sin(4x),sin(5x) sin(x),sin(2x),sin(3x),sin(4x),sin(5x)
在这里插入图片描述
通过调整振幅可以让它们慢慢接近目标函数,比如 s i n ( x ) sin(x) sin(x)处处小于目标函数:
在这里插入图片描述
将其振幅增大一倍可得 2 sin ⁡ ( x ) 2\sin(x) 2sin(x)
在这里插入图片描述
此时 2 s i n ( x ) 2sin(x) 2sin(x) 有地方超出目标函数,此时我们从周期为 2 π 2\pi 2π的函数中选择一个,减去一点(下面以 2 s i n ( x ) − s i n ( 2 x ) 2sin(x)-sin(2x) 2sin(x)sin(2x)为例):
在这里插入图片描述
通过调整振幅,加加减减,我们可以慢慢接近目标函数:
在这里插入图片描述

综上,构造出来的三角函数和类似于如下的样子:

在这里插入图片描述
这符合之前的分析:

  • 有常数项
  • 用奇函数和偶函数组合出任意函数
  • 周期为T
  • 调整振幅,逼近原函数

3 sin ⁡ ( x ) ,   cos ⁡ ( x ) \sin(x),\ \cos(x) sin(x), cos(x)的另外一种表示方法

欧拉公式:

e i θ e^{i\theta} eiθ 代表复平面一个夹角为 θ \theta θ 的向量:
在这里插入图片描述

θ \theta θ 不再是常数,而是代表时间的变量t的时候: e i θ → e i t e^{i\theta }\to e^{it} eiθeit,随着时间t的增长, θ \theta θ不断增大,这个向量就会旋转起来, 2 π 2\pi 2π的时间会旋转一圈,这就是 T = 2 π T=2\pi T=2π

通过欧拉公式表示 s i n ( t ) sin(t) sin(t)

根据欧拉公式,有: e i t = c o s ( t ) + i s i n ( t ) e^{it}=cos(t)+isin(t) eit=cos(t)+isin(t),所以,在时间轴t上,把 e i t e^{it} eit 向量的虚部(也就是纵坐标)记录下来,得到的就是 s i n ( t ) sin(t) sin(t)
在这里插入图片描述
代数上用 I m Im Im表示虚部:

s i n ( t ) = I m ( e i t ) sin(t)=Im(e^{it}) sin(t)=Im(eit)

作为对比,记录 e i 2 t e^{i2t} ei2t的虚部,此时我们可以得到 s i n ( 2 t ) sin(2t) sin(2t)
在这里插入图片描述

如果在时间轴t上,把 e i t e^{it} eit 的实部(横坐标)记录下来,得到的就是 c o s ( t ) cos(t) cos(t) 的曲线:
在这里插入图片描述
代数上使用 R e Re Re代表实部:

c o s ( t ) = R e ( e i t ) cos(t)=Re(e^{it}) cos(t)=Re(eit)

更一般的,在 e i w t e^{iwt} eiwt图像中,我们可以观察到旋转的频率(能反应不同频率旋转的快慢,下面的动图更好理解),所以称为频域;而在 sin ⁡ ( t ) \sin (t) sin(t)图像中我们可以观察到流逝的时间,所以称为时域:

在这里插入图片描述

4 通过频域求系数:

假设有这么一个函数:

g ( x ) = s i n ( x ) + s i n ( 2 x ) g(x)=sin(x)+sin(2x) g(x)=sin(x)+sin(2x)

可以看出这是一个 T = 2 π T=2\pi T=2π 的函数:
在这里插入图片描述
如果转到频域去,那么函数 g ( x ) g(x) g(x)就是下面这个复数函数的虚部:

g ( t ) = I m ( e i t + e 2 i t ) g(t)=Im(e^{it}+e^{2it}) g(t)=Im(eit+e2it)

我们先看下 e i θ + e i 2 θ e^{i\theta}+e^{i2\theta} eiθ+ei2θ ,其中 θ \theta θ 是常数,很显然这是两个向量之和:
在这里插入图片描述
θ \theta θ换成流逝的时间t,并将虚部记录下来,此时就得到了 g ( t ) g(t) g(t)
在这里插入图片描述
函数向量

从上面的讨论我们可以看出, e i w t e^{iwt} eiwt是一个旋转的向量。而根据欧拉公式,有:

e i w t = c o s ( w t ) + i s i n ( w t ) e^{iwt}=cos(wt)+isin(wt) eiwt=cos(wt)+isin(wt)

从图像上看:
在这里插入图片描述
这里 s i n ( w t ) , c o s ( w t ) sin(wt),cos(wt) sin(wt),cos(wt)也是向量。

e i w t , s i n ( w t ) , c o s ( w t ) e^{iwt},sin(wt),cos(wt) eiwt,sin(wt),cos(wt)都称为函数向量,其点积定义如下:

待补充

g(t)是一个线性组合

从上面的讨论,我们可以得到 s i n ( t ) , s i n ( 2 t ) sin(t),sin(2t) sin(t),sin(2t)是函数向量,那么它们的线性组合得到的也是函数向量:

g ( t ) = s i n ( t ) + s i n ( 2 t ) g(t)=sin(t)+sin(2t) g(t)=sin(t)+sin(2t)

根据点积定义有:

s i n ( t ) ⋅ s i n ( 2 t ) = ∫ 0 2 π s i n ( t ) s i n ( 2 t ) d t = 0 sin(t)\cdot sin(2t)=\int_{0}^{2\pi}sin(t)sin(2t)dt=0 sin(t)sin(2t)=02πsin(t)sin(2t)dt=0

根据点积的代数和几何意义(待补充), s i n ( t ) ⋅ s i n ( 2 t ) = 0 sin(t)\cdot sin(2t)=0 sin(t)sin(2t)=0说明了这两个函数向量正交、线性无关且是正交基。

如果写成如下形式:

g ( t ) = 1 s i n ( t ) + 1 s i n ( 2 t ) g(t)=1sin(t)+1sin(2t) g(t)=1sin(t)+1sin(2t)

那么就可以理解为 g ( t ) g(t) g(t)在正交基 s i n ( t ) , s i n ( 2 t ) sin(t),sin(2t) sin(t),sin(2t)下的坐标为 ( 1 , 1 ) (1,1) (1,1)

如何求正交基的坐标

假设

w → = 2 u → + 3 v → \overrightarrow{w}=2\overrightarrow{u}+3\overrightarrow{v} w =2u +3v

其中, u → = ( 1 1 ) , v → = ( − 1 1 ) \overrightarrow{u}=\begin{pmatrix}1\\1\end{pmatrix},\overrightarrow{v}=\begin{pmatrix}-1\\1\end{pmatrix} u =(11),v =(11)

通过点积:

u → ⋅ v → = 0 \overrightarrow{u}\cdot\overrightarrow{v}=0 u v =0

可知这两个向量正交,是正交基, w → \overrightarrow{w} w 在基 u → , v → \overrightarrow{u},\overrightarrow{v} u ,v 下的坐标为 ( 2 , 3 ) (2,3) (2,3),其中在基 u → \overrightarrow{u} u 下的坐标可以通过这种点积操作来计算(注意只有对正交基才能这么做):

w → ⋅ u → u → ⋅ u → = ( − 1 , 5 ) ⋅ ( 1 , 1 ) ( − 1 , 1 ) ⋅ ( − 1 , 1 ) = 2 {\overrightarrow{w}\cdot\overrightarrow{u}\over\overrightarrow{u}\cdot\overrightarrow{u}}={(-1,5)\cdot(1,1)\over(-1,1)\cdot(-1,1)}=2 u u w u =(1,1)(1,1)(1,5)(1,1)=2

如何求 sin ⁡ ( n t ) \sin(nt) sin(nt) 基下的坐标

对于

g ( x ) = s i n ( x ) + s i n ( 2 x ) g(x)=sin(x)+sin(2x) g(x)=sin(x)+sin(2x)

其中 g ( x ) g(x) g(x)是向量, s i n ( t ) , s i n ( 2 t ) sin(t),sin(2t) sin(t),sin(2t)是正交基,周期 T = 2 π T=2\pi T=2π

因为是正交基,根据刚才的分析,我们可以通过如下的方式求基 s i n ( t ) sin(t) sin(t)下的坐标:

g ( t ) ⋅ s i n ( t ) s i n ( t ) ⋅ s i n ( t ) = ∫ 0 2 π g ( x ) s i n ( x ) d x ∫ 0 2 π s i n 2 ( x ) d x = 1 \frac{g(t)\cdot sin(t)}{sin(t)\cdot sin(t)}=\frac{\int_0^{2\pi}g(x)sin(x)dx}{\int_0^{2\pi}sin^2(x)dx}=1 sin(t)sin(t)g(t)sin(t)=02πsin2(x)dx02πg(x)sin(x)dx=1

更一般的情况

对于之前的假设,其中 f ( x ) f(x) f(x)的周期为T:
在这里插入图片描述
可以改写成这样:
在这里插入图片描述
也就是说向量 f ( x ) f(x) f(x)是以下正交基的线性组合:
在这里插入图片描述
这里 1 1 1也是一个基,那么可以得到:
在这里插入图片描述
在这里插入图片描述
C也可以通过点积来表示,最终可以得到傅里叶级数的表达式:
在这里插入图片描述
其中(下面的式子其实就是在求坐标):
在这里插入图片描述

5 傅里叶级数的另外一种表现形式

根据欧拉公式:

e i θ = cos ⁡ θ + i sin ⁡ θ e^{i\theta}=\cos\theta+i\sin\theta eiθ=cosθ+isinθ

我们可以推出:

s i n θ = e i θ − e − i θ 2 i c o s θ = e i θ + e − i θ 2 sin\theta=\frac{e^{i\theta}-e^{-i\theta}}{2i}\\cos\theta=\frac{e^{i\theta}+e^{-i\theta}}{2} sinθ=2ieiθeiθcosθ=2eiθ+eiθ

根据上式,我们可以写出傅里叶级数的另外一种形式:

f ( x ) = ∑ n = − ∞ ∞ c n ⋅ e i 2 π n x T f(x)=\sum\limits_{n=-\infty}^{\infty}c_n\cdot e^{i\frac{2\pi nx}{T}} f(x)=n=cneiT2πnx

其中:

c n = 1 T ∫ x 0 x 0 + T f ( x ) ⋅ e − i 2 π n x T d x c_n=\frac{1}{T}\int_{x_0}^{x_0+T}f(x)\cdot e^{-i\frac{2\pi nx}{T}}dx cn=T1x0x0+Tf(x)eiT2πnxdx

解读一下:

在这里插入图片描述
对于复数函数,定义的点积为:

在这里插入图片描述

其中 f ( x ) , g ( x ) f(x),g(x) f(x),g(x)为复数函数, f ( x ) ‾ \overline{f(x)} f(x) f ( x ) f(x) f(x)的共轭,所以 c n c_n cn的代数表达式中有一个负号。

注意,这样顶级点积是为了保证:

x → ⋅ x → ≥ 0 \overrightarrow{x}\cdot\overrightarrow{x}\ge0 x x 0

参考:

https://www.matongxue.com/madocs/619.html

  • 7
    点赞
  • 24
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
傅立叶变换和复变函数是数学中非常重要的两个概念,可以应用于信号处理、图像处理、电路分析等领域。下面是一个关于傅立叶变换和复变函数的课程设计,希望能对您有所帮助。 课程设计题目:傅立叶变换和复变函数的应用 一、设计目的 通过本次设计,学生能够了解并掌握傅立叶变换和复变函数的基本概念、性质和应用,培养学生的分析问题和解决问题的能力。 二、设计内容和要求 1. 傅立叶变换的基本概念、性质和应用 - 傅立叶级数 - 傅立叶变换 - 傅立叶反变换 - 傅立叶变换的性质 - 傅立叶变换的应用(例如信号处理、图像处理等) 2. 复变函数的基本概念、性质和应用 - 复数和复平面 - 复变函数的定义 - 复变函数的导数和积分 - 解析函数和调和函数 - 应用(例如电路分析、流体力学等) 3. 综合应用 - 利用傅立叶变换和复变函数解决实际问题,例如信号处理、图像处理、电路分析等。 设计要求: 1. 设计时要注意从基本概念出发,逐步引入性质和应用。 2. 注重实例分析,突出傅立叶变换和复变函数在实际问题中的应用。 3. 要求学生掌握傅立叶变换和复变函数的基本概念、性质和应用,并能够独立解决实际问题。 三、设计步骤 1. 学生学习傅立叶变换和复变函数的基本概念、性质和应用。 2. 学生通过课堂练习、作业等方式掌握相关知识。 3. 学生分组完成一个综合应用的课程设计,包括问题分析、解决方案设计、计算结果和结论分析等环节。 4. 学生进行课堂汇报,讨论和总结。 四、评分标准 1. 设计内容是否全面、准确、深入。 2. 分析问题和解决问题的能力是否得到提升。 3. 解决实际问题的能力是否得到提升。 4. 课堂汇报表现和讨论质量。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值