从复变函数到傅里叶级数

       首先我们来讲讲为什么要把信号表达成傅里叶级数,因为三角函数作为线性系统的输入时具有频率不变的特性,举一个例子,假设线性系统的输入信号为x(t)=cos(\omega wt),输出信号为

                                                                   y(t)=x(t)+\alpha x(t-t_{0})

                                                                           =cos(\omega t)+\alpha cos(\omega t-\omega t_{0} )

                                                                           =(1+\alpha cos\omega t_{0})cos\omega t+\alpha sin\omega t_{0}sin\omega t

                                                                           =Acos(\omega t-\theta )

       其中,A=\sqrt{\left ( 1+\alpha cos\omega t_{0} \right )^{2}+\left ( \alpha sin\omega t_{0} \right )^{2}}\theta =arctan\left [ \frac{\alpha sin\omega t_{0}}{\left ( 1+\alpha cos\omega t_{0} \right )} \right ]

       从这个例子可以看出,输入是正弦信号,输出是一个与输入频率相同的正弦信号,只是幅度和相位发生了变化。其他任何一种周期信号(例如方波、三角波)都不具备这种波形保持特性。

复变函数

       复变函数是指以复数z=x+iy为自变量的函数称为复变函数。在通信中最重要的复变函数就是复指数函数,即f(z)=e^{z},将其麦克劳林展开式为:

                                                                    e^{z}=1+z+{\frac{1}{2!}}z^{2}+{\frac{1}{3!}}z^{3}+\cdots

       令z=ix,则

                                                        e^{ix}=1+ix+{\frac{1}{2!}}(ix)^{2}+{\frac{1}{3!}}(ix)^{3}+{\frac{1}{4!}}(ix)^{4}+\cdots

                                                             =1+ix-{\frac{1}{2!}}x^{2}-i{\frac{1}{3!}}x^{3}+{\frac{1}{4!}}x^{4}+\cdots

       而

                                                             cosx=1-{\frac{1}{2!}}x^{2}+{\frac{1}{4!}}x^{4}-{\frac{1}{6!}}x^{6}+\cdots

                                                             sinx=x-{\frac{1}{3!}}x^{3}+{\frac{1}{5!}}x^{5}-{\frac{1}{7!}}x^{7}+\cdots

       故

                                                                         e^{ix}=cosx+isinx

       上式就是著名的欧拉公式,欧拉公式将三角函数的定义域扩大到复数,建立了三角函数和指数函数的关系。

傅里叶级数

一、三角形式的傅里叶级数

       首先假设一下周期信号x(t),周期为TT,即x(t+T)=x(t),其角频率为\omega =\frac{2\pi }{T},如果x(t)满足狄里赫利条件(实际当中所有周期信号都满足这个条件,不满足的都是刻意造出来的),即

  • 在任意一个周期内,有限个间断点;
  • 在任意一个周期内,有限的极值;
  • 在任意一个周期内,其绝对值可积。

       则x(t)可以表达成傅里叶级数:

                                                            x(t)=a_{0}+\sum_{n=1}^{\infty}\left \{ {a_{n}cos(n\omega t)}+{b_{n}sin(n\omega t)} \right \}

       想要求解式中系数a_{n}b_{n}需要知道三角函数的正交性,即

  • 正弦函数和余弦函数是正交的,\int_{\frac{-T}{2}}^{\frac{T}{2}}cos(n\omega t)sin(m\omega t)dt=0
  • 不同频率的正弦函数是正交的,\int_{\frac{-T}{2}}^{\frac{T}{2}}sin(n\omega t)sin(m\omega t)dt=\left\{\begin{matrix} \frac{T}{2},m= n\\ 0,m\neq n \end{matrix}\right.
  • 不同频率的余弦函数是正交的,\int_{\frac{-T}{2}}^{\frac{T}{2}}cos(n\omega t)cos(m\omega t)dt=\left\{\begin{matrix} \frac{T}{2},m= n\\ 0,m\neq n \end{matrix}\right.

       因此,要求直流分量a_{0}只需对公式两边进行一个周期内积分,所有非直流分量的积分都为0,只剩下a_{0};求系数a_{n}则将公式两边都乘以cos(nwt)后再积分,根据正交性,右边只剩下系数a_{n},依次类推可得b_{n},表达式如下:

                                                                        a_{0}=\frac{1}{T}\int_{\frac{-T}{2}}^{\frac{T}{2}}x(t)dt

                                                                 a_{n}=\frac{2}{T}\int_{\frac{-T}{2}}^{\frac{T}{2}}x(t)cos(n\omega t)dt

                                                                 b_{n}=\frac{2}{T}\int_{\frac{-T}{2}}^{\frac{T}{2}}x(t)sin(n\omega t)dt

 

二、复指数形式的傅里叶级数

       根据欧拉公式可得

                                                                    cos(nwt)=\frac{e^{jn\omega t}+e^{-jn\omega t}}{2}

                                                                   sin(nwt)=\frac{e^{jn\omega t}-e^{-jn\omega t}}{2j}

       代入三角形式的傅里叶级数公式得到

                                            x(t)=a_{0}+\sum_{n=1}^{\infty}\left [ \frac{a_{n}-jb_{n}}{2}e^{jn\omega t} +\frac{a_{n}+jb_{n}}{2}e^{-jn\omega t}\right ]

       令

                                                                             c_{0}=a_{0}

                                                                            c_{n}=\frac{a_{n}-jb_{n}}{2}

                                                                            c_{-n}=\frac{a_{n}+jb_{n}}{2}

       则

                                                                       x(t)=\sum_{n=-\infty }^{\infty}c_{n}e^{-jn\omega t}\right

       其中,c_{n}也称作离散频谱,计算公式如下:

                                                                      c_{n}=\frac{1}{T}\int_{\frac{-T}{2}}^{\frac{T}{2}}x(t)e^{-jn\omega t}dt
 

 

  • 1
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
傅立叶变换和复变函数是数学中非常重要的两个概念,可以应用于信号处理、图像处理、电路分析等领域。下面是一个关于傅立叶变换和复变函数的课程设计,希望能对您有所帮助。 课程设计题目:傅立叶变换和复变函数的应用 一、设计目的 通过本次设计,学生能够了解并掌握傅立叶变换和复变函数的基本概念、性质和应用,培养学生的分析问题和解决问题的能力。 二、设计内容和要求 1. 傅立叶变换的基本概念、性质和应用 - 傅立叶级数 - 傅立叶变换 - 傅立叶反变换 - 傅立叶变换的性质 - 傅立叶变换的应用(例如信号处理、图像处理等) 2. 复变函数的基本概念、性质和应用 - 复数和复平面 - 复变函数的定义 - 复变函数的导数和积分 - 解析函数和调和函数 - 应用(例如电路分析、流体力学等) 3. 综合应用 - 利用傅立叶变换和复变函数解决实际问题,例如信号处理、图像处理、电路分析等。 设计要求: 1. 设计时要注意从基本概念出发,逐步引入性质和应用。 2. 注重实例分析,突出傅立叶变换和复变函数在实际问题中的应用。 3. 要求学生掌握傅立叶变换和复变函数的基本概念、性质和应用,并能够独立解决实际问题。 三、设计步骤 1. 学生学习傅立叶变换和复变函数的基本概念、性质和应用。 2. 学生通过课堂练习、作业等方式掌握相关知识。 3. 学生分组完成一个综合应用的课程设计,包括问题分析、解决方案设计、计算结果和结论分析等环节。 4. 学生进行课堂汇报,讨论和总结。 四、评分标准 1. 设计内容是否全面、准确、深入。 2. 分析问题和解决问题的能力是否得到提升。 3. 解决实际问题的能力是否得到提升。 4. 课堂汇报表现和讨论质量。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值